Stabilization of invariant tori in Hamiltonian systems under persistently acting disturbances
The problem of invariant tori stabilization in multi‐degrees‐of‐freedom Hamiltonian systems under uniformly bounded disturbances is considered. The main result gives the conditions for ultimate boundedness of trajectories of controlled system under disturbances with respect to the torus to be stabil...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2001-03, Vol.11 (3), p.253-265 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 3 |
container_start_page | 253 |
container_title | International journal of robust and nonlinear control |
container_volume | 11 |
creator | Polushin, Ilya G. |
description | The problem of invariant tori stabilization in multi‐degrees‐of‐freedom Hamiltonian systems under uniformly bounded disturbances is considered. The main result gives the conditions for ultimate boundedness of trajectories of controlled system under disturbances with respect to the torus to be stabilized. The estimates for region of attraction and ultimate bound are obtained. The essential role in the proof is played by Lemma 1, which gives the conditions for ultimate boundedness with respect to a given nonnegative smooth function V without assumption of negative (semi)‐definiteness of time derivative of V. Copyright © 2001 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rnc.569 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rnc_569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_SQKQ7KKP_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-2d5ac4373288bb62511b05c0667ccbbad45a15a5cf795a2cf8ff5d97f2a264fd3</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKf4FfLmg3QmadM0jzJ0k43pNsUnCWnaSLRLR5Kp9dObUfHNp7v734-D-wFwjtEII0SunFUjmvMDMMCI8wSTlB_u-4wnBSfpMTjx_g2huCPZALysgyxNY75lMK2FrYbGfkhnpA0wtM7EEU7lxjShtTGEvvOh3ni4s1Xt4LZ23sTAhqaDUgVjX2EVg50rpVW1PwVHWja-PvutQ_B0e_M4nibz-8nd-HqeKMIZT0hFpcpSlpKiKMucUIxLRBXKc6ZUWcoqoxJTSZVmnEqidKE1rTjTRJI801U6BBf9XeVa712txdaZjXSdwEjsrYhoRUQrkbzsyU_T1N1_mFgtxj2d9PT-ya8_Wrp3kbOUUfG8mIj1crZks9mDWKU_LyR1Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilization of invariant tori in Hamiltonian systems under persistently acting disturbances</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Polushin, Ilya G.</creator><creatorcontrib>Polushin, Ilya G.</creatorcontrib><description>The problem of invariant tori stabilization in multi‐degrees‐of‐freedom Hamiltonian systems under uniformly bounded disturbances is considered. The main result gives the conditions for ultimate boundedness of trajectories of controlled system under disturbances with respect to the torus to be stabilized. The estimates for region of attraction and ultimate bound are obtained. The essential role in the proof is played by Lemma 1, which gives the conditions for ultimate boundedness with respect to a given nonnegative smooth function V without assumption of negative (semi)‐definiteness of time derivative of V. Copyright © 2001 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.569</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>disturbances ; Hamiltonian systems ; oscillations control</subject><ispartof>International journal of robust and nonlinear control, 2001-03, Vol.11 (3), p.253-265</ispartof><rights>Copyright © 2001 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-2d5ac4373288bb62511b05c0667ccbbad45a15a5cf795a2cf8ff5d97f2a264fd3</citedby><cites>FETCH-LOGICAL-c2979-2d5ac4373288bb62511b05c0667ccbbad45a15a5cf795a2cf8ff5d97f2a264fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.569$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.569$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Polushin, Ilya G.</creatorcontrib><title>Stabilization of invariant tori in Hamiltonian systems under persistently acting disturbances</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust Nonlinear Control</addtitle><description>The problem of invariant tori stabilization in multi‐degrees‐of‐freedom Hamiltonian systems under uniformly bounded disturbances is considered. The main result gives the conditions for ultimate boundedness of trajectories of controlled system under disturbances with respect to the torus to be stabilized. The estimates for region of attraction and ultimate bound are obtained. The essential role in the proof is played by Lemma 1, which gives the conditions for ultimate boundedness with respect to a given nonnegative smooth function V without assumption of negative (semi)‐definiteness of time derivative of V. Copyright © 2001 John Wiley & Sons, Ltd.</description><subject>disturbances</subject><subject>Hamiltonian systems</subject><subject>oscillations control</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKf4FfLmg3QmadM0jzJ0k43pNsUnCWnaSLRLR5Kp9dObUfHNp7v734-D-wFwjtEII0SunFUjmvMDMMCI8wSTlB_u-4wnBSfpMTjx_g2huCPZALysgyxNY75lMK2FrYbGfkhnpA0wtM7EEU7lxjShtTGEvvOh3ni4s1Xt4LZ23sTAhqaDUgVjX2EVg50rpVW1PwVHWja-PvutQ_B0e_M4nibz-8nd-HqeKMIZT0hFpcpSlpKiKMucUIxLRBXKc6ZUWcoqoxJTSZVmnEqidKE1rTjTRJI801U6BBf9XeVa712txdaZjXSdwEjsrYhoRUQrkbzsyU_T1N1_mFgtxj2d9PT-ya8_Wrp3kbOUUfG8mIj1crZks9mDWKU_LyR1Wg</recordid><startdate>200103</startdate><enddate>200103</enddate><creator>Polushin, Ilya G.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200103</creationdate><title>Stabilization of invariant tori in Hamiltonian systems under persistently acting disturbances</title><author>Polushin, Ilya G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-2d5ac4373288bb62511b05c0667ccbbad45a15a5cf795a2cf8ff5d97f2a264fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>disturbances</topic><topic>Hamiltonian systems</topic><topic>oscillations control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polushin, Ilya G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polushin, Ilya G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of invariant tori in Hamiltonian systems under persistently acting disturbances</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust Nonlinear Control</addtitle><date>2001-03</date><risdate>2001</risdate><volume>11</volume><issue>3</issue><spage>253</spage><epage>265</epage><pages>253-265</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>The problem of invariant tori stabilization in multi‐degrees‐of‐freedom Hamiltonian systems under uniformly bounded disturbances is considered. The main result gives the conditions for ultimate boundedness of trajectories of controlled system under disturbances with respect to the torus to be stabilized. The estimates for region of attraction and ultimate bound are obtained. The essential role in the proof is played by Lemma 1, which gives the conditions for ultimate boundedness with respect to a given nonnegative smooth function V without assumption of negative (semi)‐definiteness of time derivative of V. Copyright © 2001 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/rnc.569</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2001-03, Vol.11 (3), p.253-265 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_crossref_primary_10_1002_rnc_569 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | disturbances Hamiltonian systems oscillations control |
title | Stabilization of invariant tori in Hamiltonian systems under persistently acting disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20invariant%20tori%20in%20Hamiltonian%20systems%20under%20persistently%20acting%20disturbances&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Polushin,%20Ilya%20G.&rft.date=2001-03&rft.volume=11&rft.issue=3&rft.spage=253&rft.epage=265&rft.pages=253-265&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.569&rft_dat=%3Cistex_cross%3Eark_67375_WNG_SQKQ7KKP_R%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |