Joint attack detection and secure state estimation of cyber‐physical systems

Summary This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2020-07, Vol.30 (11), p.4303-4330
Hauptverfasser: Forti, Nicola, Battistelli, Giorgio, Chisci, Luigi, Sinopoli, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4330
container_issue 11
container_start_page 4303
container_title International journal of robust and nonlinear control
container_volume 30
creator Forti, Nicola
Battistelli, Giorgio
Chisci, Luigi
Sinopoli, Bruno
description Summary This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.
doi_str_mv 10.1002/rnc.4724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rnc_4724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414662900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMoWKvgIwS8EWTrJJs95FIWj5QKotdLNp3g1nZTkxTZOx_BZ_RJTA94J3iVgflm8s9HyCmDEQPgl67TI1FwsUcGDKRMGE_l_roWMiklTw_JkfczgNjjYkAmD7btAlUhKP1GpxhQh9Z2VHVT6lGvHFIfVECKPrQLtelZQ3XfoPv-_Fq-9r7Vak597wMu_DE5MGru8WT3DsnLzfVzdZeMH2_vq6txorlMRdKAUKoxJWc58LIpCyUAGDLGoJCCpWmmsyxn2VRmJYJBlTNjMpMWPM95LlQ6JGfbvUtn31cxWz2zK9fFL2sumIiUBIjU-ZbSznrv0NRLF49wfc2gXtuqo616bSuiF1v0AxtrvG6x0_iLR12iFILLPFbAIl3-n67asPFW2VUX4miyG23n2P8ZqH6aVJtgP1UYi8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414662900</pqid></control><display><type>article</type><title>Joint attack detection and secure state estimation of cyber‐physical systems</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Forti, Nicola ; Battistelli, Giorgio ; Chisci, Luigi ; Sinopoli, Bruno</creator><creatorcontrib>Forti, Nicola ; Battistelli, Giorgio ; Chisci, Luigi ; Sinopoli, Bruno</creatorcontrib><description>Summary This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4724</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Automation &amp; Control Systems ; Bayesian state estimation ; Bernoulli filter ; Cyber-physical systems ; Engineering ; Engineering, Electrical &amp; Electronic ; extra packet injection ; Mathematics ; Mathematics, Applied ; Packet switching ; Physical Sciences ; random finite sets ; Science &amp; Technology ; secure state estimation ; State estimation ; State vectors ; Technology</subject><ispartof>International journal of robust and nonlinear control, 2020-07, Vol.30 (11), p.4303-4330</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000484429600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</citedby><cites>FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</cites><orcidid>0000-0001-5510-1616 ; 0000-0001-5049-3577 ; 0000-0002-0124-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,28257,45583,45584</link.rule.ids></links><search><creatorcontrib>Forti, Nicola</creatorcontrib><creatorcontrib>Battistelli, Giorgio</creatorcontrib><creatorcontrib>Chisci, Luigi</creatorcontrib><creatorcontrib>Sinopoli, Bruno</creatorcontrib><title>Joint attack detection and secure state estimation of cyber‐physical systems</title><title>International journal of robust and nonlinear control</title><addtitle>INT J ROBUST NONLIN</addtitle><description>Summary This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.</description><subject>Automation &amp; Control Systems</subject><subject>Bayesian state estimation</subject><subject>Bernoulli filter</subject><subject>Cyber-physical systems</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>extra packet injection</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Packet switching</subject><subject>Physical Sciences</subject><subject>random finite sets</subject><subject>Science &amp; Technology</subject><subject>secure state estimation</subject><subject>State estimation</subject><subject>State vectors</subject><subject>Technology</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkNtKAzEQhoMoWKvgIwS8EWTrJJs95FIWj5QKotdLNp3g1nZTkxTZOx_BZ_RJTA94J3iVgflm8s9HyCmDEQPgl67TI1FwsUcGDKRMGE_l_roWMiklTw_JkfczgNjjYkAmD7btAlUhKP1GpxhQh9Z2VHVT6lGvHFIfVECKPrQLtelZQ3XfoPv-_Fq-9r7Vak597wMu_DE5MGru8WT3DsnLzfVzdZeMH2_vq6txorlMRdKAUKoxJWc58LIpCyUAGDLGoJCCpWmmsyxn2VRmJYJBlTNjMpMWPM95LlQ6JGfbvUtn31cxWz2zK9fFL2sumIiUBIjU-ZbSznrv0NRLF49wfc2gXtuqo616bSuiF1v0AxtrvG6x0_iLR12iFILLPFbAIl3-n67asPFW2VUX4miyG23n2P8ZqH6aVJtgP1UYi8Q</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Forti, Nicola</creator><creator>Battistelli, Giorgio</creator><creator>Chisci, Luigi</creator><creator>Sinopoli, Bruno</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5510-1616</orcidid><orcidid>https://orcid.org/0000-0001-5049-3577</orcidid><orcidid>https://orcid.org/0000-0002-0124-4715</orcidid></search><sort><creationdate>20200725</creationdate><title>Joint attack detection and secure state estimation of cyber‐physical systems</title><author>Forti, Nicola ; Battistelli, Giorgio ; Chisci, Luigi ; Sinopoli, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation &amp; Control Systems</topic><topic>Bayesian state estimation</topic><topic>Bernoulli filter</topic><topic>Cyber-physical systems</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>extra packet injection</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Packet switching</topic><topic>Physical Sciences</topic><topic>random finite sets</topic><topic>Science &amp; Technology</topic><topic>secure state estimation</topic><topic>State estimation</topic><topic>State vectors</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forti, Nicola</creatorcontrib><creatorcontrib>Battistelli, Giorgio</creatorcontrib><creatorcontrib>Chisci, Luigi</creatorcontrib><creatorcontrib>Sinopoli, Bruno</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forti, Nicola</au><au>Battistelli, Giorgio</au><au>Chisci, Luigi</au><au>Sinopoli, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint attack detection and secure state estimation of cyber‐physical systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><stitle>INT J ROBUST NONLIN</stitle><date>2020-07-25</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>4303</spage><epage>4330</epage><pages>4303-4330</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/rnc.4724</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5510-1616</orcidid><orcidid>https://orcid.org/0000-0001-5049-3577</orcidid><orcidid>https://orcid.org/0000-0002-0124-4715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2020-07, Vol.30 (11), p.4303-4330
issn 1049-8923
1099-1239
language eng
recordid cdi_crossref_primary_10_1002_rnc_4724
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Automation & Control Systems
Bayesian state estimation
Bernoulli filter
Cyber-physical systems
Engineering
Engineering, Electrical & Electronic
extra packet injection
Mathematics
Mathematics, Applied
Packet switching
Physical Sciences
random finite sets
Science & Technology
secure state estimation
State estimation
State vectors
Technology
title Joint attack detection and secure state estimation of cyber‐physical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20attack%20detection%20and%20secure%20state%20estimation%20of%20cyber%E2%80%90physical%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Forti,%20Nicola&rft.date=2020-07-25&rft.volume=30&rft.issue=11&rft.spage=4303&rft.epage=4330&rft.pages=4303-4330&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4724&rft_dat=%3Cproquest_cross%3E2414662900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414662900&rft_id=info:pmid/&rfr_iscdi=true