Joint attack detection and secure state estimation of cyber‐physical systems
Summary This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFS...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2020-07, Vol.30 (11), p.4303-4330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4330 |
---|---|
container_issue | 11 |
container_start_page | 4303 |
container_title | International journal of robust and nonlinear control |
container_volume | 30 |
creator | Forti, Nicola Battistelli, Giorgio Chisci, Luigi Sinopoli, Bruno |
description | Summary
This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application. |
doi_str_mv | 10.1002/rnc.4724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_rnc_4724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414662900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMoWKvgIwS8EWTrJJs95FIWj5QKotdLNp3g1nZTkxTZOx_BZ_RJTA94J3iVgflm8s9HyCmDEQPgl67TI1FwsUcGDKRMGE_l_roWMiklTw_JkfczgNjjYkAmD7btAlUhKP1GpxhQh9Z2VHVT6lGvHFIfVECKPrQLtelZQ3XfoPv-_Fq-9r7Vak597wMu_DE5MGru8WT3DsnLzfVzdZeMH2_vq6txorlMRdKAUKoxJWc58LIpCyUAGDLGoJCCpWmmsyxn2VRmJYJBlTNjMpMWPM95LlQ6JGfbvUtn31cxWz2zK9fFL2sumIiUBIjU-ZbSznrv0NRLF49wfc2gXtuqo616bSuiF1v0AxtrvG6x0_iLR12iFILLPFbAIl3-n67asPFW2VUX4miyG23n2P8ZqH6aVJtgP1UYi8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414662900</pqid></control><display><type>article</type><title>Joint attack detection and secure state estimation of cyber‐physical systems</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Forti, Nicola ; Battistelli, Giorgio ; Chisci, Luigi ; Sinopoli, Bruno</creator><creatorcontrib>Forti, Nicola ; Battistelli, Giorgio ; Chisci, Luigi ; Sinopoli, Bruno</creatorcontrib><description>Summary
This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4724</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Automation & Control Systems ; Bayesian state estimation ; Bernoulli filter ; Cyber-physical systems ; Engineering ; Engineering, Electrical & Electronic ; extra packet injection ; Mathematics ; Mathematics, Applied ; Packet switching ; Physical Sciences ; random finite sets ; Science & Technology ; secure state estimation ; State estimation ; State vectors ; Technology</subject><ispartof>International journal of robust and nonlinear control, 2020-07, Vol.30 (11), p.4303-4330</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000484429600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</citedby><cites>FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</cites><orcidid>0000-0001-5510-1616 ; 0000-0001-5049-3577 ; 0000-0002-0124-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,28257,45583,45584</link.rule.ids></links><search><creatorcontrib>Forti, Nicola</creatorcontrib><creatorcontrib>Battistelli, Giorgio</creatorcontrib><creatorcontrib>Chisci, Luigi</creatorcontrib><creatorcontrib>Sinopoli, Bruno</creatorcontrib><title>Joint attack detection and secure state estimation of cyber‐physical systems</title><title>International journal of robust and nonlinear control</title><addtitle>INT J ROBUST NONLIN</addtitle><description>Summary
This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.</description><subject>Automation & Control Systems</subject><subject>Bayesian state estimation</subject><subject>Bernoulli filter</subject><subject>Cyber-physical systems</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>extra packet injection</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Packet switching</subject><subject>Physical Sciences</subject><subject>random finite sets</subject><subject>Science & Technology</subject><subject>secure state estimation</subject><subject>State estimation</subject><subject>State vectors</subject><subject>Technology</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkNtKAzEQhoMoWKvgIwS8EWTrJJs95FIWj5QKotdLNp3g1nZTkxTZOx_BZ_RJTA94J3iVgflm8s9HyCmDEQPgl67TI1FwsUcGDKRMGE_l_roWMiklTw_JkfczgNjjYkAmD7btAlUhKP1GpxhQh9Z2VHVT6lGvHFIfVECKPrQLtelZQ3XfoPv-_Fq-9r7Vak597wMu_DE5MGru8WT3DsnLzfVzdZeMH2_vq6txorlMRdKAUKoxJWc58LIpCyUAGDLGoJCCpWmmsyxn2VRmJYJBlTNjMpMWPM95LlQ6JGfbvUtn31cxWz2zK9fFL2sumIiUBIjU-ZbSznrv0NRLF49wfc2gXtuqo616bSuiF1v0AxtrvG6x0_iLR12iFILLPFbAIl3-n67asPFW2VUX4miyG23n2P8ZqH6aVJtgP1UYi8Q</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Forti, Nicola</creator><creator>Battistelli, Giorgio</creator><creator>Chisci, Luigi</creator><creator>Sinopoli, Bruno</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5510-1616</orcidid><orcidid>https://orcid.org/0000-0001-5049-3577</orcidid><orcidid>https://orcid.org/0000-0002-0124-4715</orcidid></search><sort><creationdate>20200725</creationdate><title>Joint attack detection and secure state estimation of cyber‐physical systems</title><author>Forti, Nicola ; Battistelli, Giorgio ; Chisci, Luigi ; Sinopoli, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-b04aabf8216028b87a4001e11107941335c55615d958e0fea61ff5f37266264a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation & Control Systems</topic><topic>Bayesian state estimation</topic><topic>Bernoulli filter</topic><topic>Cyber-physical systems</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>extra packet injection</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Packet switching</topic><topic>Physical Sciences</topic><topic>random finite sets</topic><topic>Science & Technology</topic><topic>secure state estimation</topic><topic>State estimation</topic><topic>State vectors</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forti, Nicola</creatorcontrib><creatorcontrib>Battistelli, Giorgio</creatorcontrib><creatorcontrib>Chisci, Luigi</creatorcontrib><creatorcontrib>Sinopoli, Bruno</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forti, Nicola</au><au>Battistelli, Giorgio</au><au>Chisci, Luigi</au><au>Sinopoli, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint attack detection and secure state estimation of cyber‐physical systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><stitle>INT J ROBUST NONLIN</stitle><date>2020-07-25</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>4303</spage><epage>4330</epage><pages>4303-4330</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This paper deals with secure state estimation of cyber‐physical systems subject to switching (on/off) attack signals and injection of fake packets (via either packet substitution or insertion of extra packets). The random set paradigm is adopted in order to model, via random finite sets (RFSs), the switching nature of both system attacks and the injection of fake measurements. The problem of detecting an attack on the system and jointly estimating its state, possibly in the presence of fake measurements, is then formulated and solved in the Bayesian framework for systems with and without direct feedthrough of the attack input to the output. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that updates in real time the joint posterior density of a Bernoulli attack RFS and of the state vector. A closed‐form Gaussian mixture implementation of the proposed HBF is fully derived in the case of invertible direct feedthrough. Finally, the effectiveness of the developed tools for joint attack detection and secure state estimation is tested on two case studies concerning a benchmark system for unknown input estimation and a standard IEEE power network application.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/rnc.4724</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-5510-1616</orcidid><orcidid>https://orcid.org/0000-0001-5049-3577</orcidid><orcidid>https://orcid.org/0000-0002-0124-4715</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2020-07, Vol.30 (11), p.4303-4330 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_crossref_primary_10_1002_rnc_4724 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Automation & Control Systems Bayesian state estimation Bernoulli filter Cyber-physical systems Engineering Engineering, Electrical & Electronic extra packet injection Mathematics Mathematics, Applied Packet switching Physical Sciences random finite sets Science & Technology secure state estimation State estimation State vectors Technology |
title | Joint attack detection and secure state estimation of cyber‐physical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20attack%20detection%20and%20secure%20state%20estimation%20of%20cyber%E2%80%90physical%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Forti,%20Nicola&rft.date=2020-07-25&rft.volume=30&rft.issue=11&rft.spage=4303&rft.epage=4330&rft.pages=4303-4330&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4724&rft_dat=%3Cproquest_cross%3E2414662900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414662900&rft_id=info:pmid/&rfr_iscdi=true |