Quantum Embedded Superstates

Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced quantum technologies (Online) 2021-06, Vol.4 (6), p.n/a
Hauptverfasser: Nefedkin, Nikita, Alù, Andrea, Krasnok, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced quantum technologies (Online)
container_volume 4
creator Nefedkin, Nikita
Alù, Andrea
Krasnok, Alex
description Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing. The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.
doi_str_mv 10.1002/qute.202000121
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qute_202000121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUTE202000121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</originalsourceid><addsrcrecordid>eNqFjz1rwzAQQEVooSHN2qlD_oDdO8mWrLEE9wMCJTSZhSydICVOU8mm5N_XIaXNluXuhvcOHmN3CDkC8IevvqOcAwcA5DhiY14iZhqK4ursvmHTlD4GhgsUhRJjdr_s7a7r21ndNuQ9-dl7v6eYOttRumXXwW4TTX_3hK2f6tX8JVu8Pb_OHxeZ45XGYQqvpefoQyilw0DBicZJDbZSwjVknSQpwCuOpVMiDAwBKGXBV6UnMWH56a-LnylFCmYfN62NB4NgjnnmmGf-8gZBn4TvzZYOF2izXK_qf_cH5WVThg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Embedded Superstates</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Nefedkin, Nikita ; Alù, Andrea ; Krasnok, Alex</creator><creatorcontrib>Nefedkin, Nikita ; Alù, Andrea ; Krasnok, Alex</creatorcontrib><description>Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing. The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.</description><identifier>ISSN: 2511-9044</identifier><identifier>EISSN: 2511-9044</identifier><identifier>DOI: 10.1002/qute.202000121</identifier><language>eng</language><subject>quantum interference ; quantum sensors ; quasi‐BIC ; supercavity modes</subject><ispartof>Advanced quantum technologies (Online), 2021-06, Vol.4 (6), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</citedby><cites>FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</cites><orcidid>0000-0001-7419-781X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqute.202000121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqute.202000121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nefedkin, Nikita</creatorcontrib><creatorcontrib>Alù, Andrea</creatorcontrib><creatorcontrib>Krasnok, Alex</creatorcontrib><title>Quantum Embedded Superstates</title><title>Advanced quantum technologies (Online)</title><description>Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing. The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.</description><subject>quantum interference</subject><subject>quantum sensors</subject><subject>quasi‐BIC</subject><subject>supercavity modes</subject><issn>2511-9044</issn><issn>2511-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjz1rwzAQQEVooSHN2qlD_oDdO8mWrLEE9wMCJTSZhSydICVOU8mm5N_XIaXNluXuhvcOHmN3CDkC8IevvqOcAwcA5DhiY14iZhqK4ursvmHTlD4GhgsUhRJjdr_s7a7r21ndNuQ9-dl7v6eYOttRumXXwW4TTX_3hK2f6tX8JVu8Pb_OHxeZ45XGYQqvpefoQyilw0DBicZJDbZSwjVknSQpwCuOpVMiDAwBKGXBV6UnMWH56a-LnylFCmYfN62NB4NgjnnmmGf-8gZBn4TvzZYOF2izXK_qf_cH5WVThg</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Nefedkin, Nikita</creator><creator>Alù, Andrea</creator><creator>Krasnok, Alex</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7419-781X</orcidid></search><sort><creationdate>202106</creationdate><title>Quantum Embedded Superstates</title><author>Nefedkin, Nikita ; Alù, Andrea ; Krasnok, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>quantum interference</topic><topic>quantum sensors</topic><topic>quasi‐BIC</topic><topic>supercavity modes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nefedkin, Nikita</creatorcontrib><creatorcontrib>Alù, Andrea</creatorcontrib><creatorcontrib>Krasnok, Alex</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced quantum technologies (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nefedkin, Nikita</au><au>Alù, Andrea</au><au>Krasnok, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Embedded Superstates</atitle><jtitle>Advanced quantum technologies (Online)</jtitle><date>2021-06</date><risdate>2021</risdate><volume>4</volume><issue>6</issue><epage>n/a</epage><issn>2511-9044</issn><eissn>2511-9044</eissn><abstract>Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing. The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.</abstract><doi>10.1002/qute.202000121</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7419-781X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2511-9044
ispartof Advanced quantum technologies (Online), 2021-06, Vol.4 (6), p.n/a
issn 2511-9044
2511-9044
language eng
recordid cdi_crossref_primary_10_1002_qute_202000121
source Wiley Online Library - AutoHoldings Journals
subjects quantum interference
quantum sensors
quasi‐BIC
supercavity modes
title Quantum Embedded Superstates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Embedded%20Superstates&rft.jtitle=Advanced%20quantum%20technologies%20(Online)&rft.au=Nefedkin,%20Nikita&rft.date=2021-06&rft.volume=4&rft.issue=6&rft.epage=n/a&rft.issn=2511-9044&rft.eissn=2511-9044&rft_id=info:doi/10.1002/qute.202000121&rft_dat=%3Cwiley_cross%3EQUTE202000121%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true