Quantum Embedded Superstates
Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing appli...
Gespeichert in:
Veröffentlicht in: | Advanced quantum technologies (Online) 2021-06, Vol.4 (6), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced quantum technologies (Online) |
container_volume | 4 |
creator | Nefedkin, Nikita Alù, Andrea Krasnok, Alex |
description | Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing.
The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics. |
doi_str_mv | 10.1002/qute.202000121 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qute_202000121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUTE202000121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</originalsourceid><addsrcrecordid>eNqFjz1rwzAQQEVooSHN2qlD_oDdO8mWrLEE9wMCJTSZhSydICVOU8mm5N_XIaXNluXuhvcOHmN3CDkC8IevvqOcAwcA5DhiY14iZhqK4ursvmHTlD4GhgsUhRJjdr_s7a7r21ndNuQ9-dl7v6eYOttRumXXwW4TTX_3hK2f6tX8JVu8Pb_OHxeZ45XGYQqvpefoQyilw0DBicZJDbZSwjVknSQpwCuOpVMiDAwBKGXBV6UnMWH56a-LnylFCmYfN62NB4NgjnnmmGf-8gZBn4TvzZYOF2izXK_qf_cH5WVThg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Embedded Superstates</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Nefedkin, Nikita ; Alù, Andrea ; Krasnok, Alex</creator><creatorcontrib>Nefedkin, Nikita ; Alù, Andrea ; Krasnok, Alex</creatorcontrib><description>Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing.
The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.</description><identifier>ISSN: 2511-9044</identifier><identifier>EISSN: 2511-9044</identifier><identifier>DOI: 10.1002/qute.202000121</identifier><language>eng</language><subject>quantum interference ; quantum sensors ; quasi‐BIC ; supercavity modes</subject><ispartof>Advanced quantum technologies (Online), 2021-06, Vol.4 (6), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</citedby><cites>FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</cites><orcidid>0000-0001-7419-781X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqute.202000121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqute.202000121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nefedkin, Nikita</creatorcontrib><creatorcontrib>Alù, Andrea</creatorcontrib><creatorcontrib>Krasnok, Alex</creatorcontrib><title>Quantum Embedded Superstates</title><title>Advanced quantum technologies (Online)</title><description>Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing.
The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.</description><subject>quantum interference</subject><subject>quantum sensors</subject><subject>quasi‐BIC</subject><subject>supercavity modes</subject><issn>2511-9044</issn><issn>2511-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjz1rwzAQQEVooSHN2qlD_oDdO8mWrLEE9wMCJTSZhSydICVOU8mm5N_XIaXNluXuhvcOHmN3CDkC8IevvqOcAwcA5DhiY14iZhqK4ursvmHTlD4GhgsUhRJjdr_s7a7r21ndNuQ9-dl7v6eYOttRumXXwW4TTX_3hK2f6tX8JVu8Pb_OHxeZ45XGYQqvpefoQyilw0DBicZJDbZSwjVknSQpwCuOpVMiDAwBKGXBV6UnMWH56a-LnylFCmYfN62NB4NgjnnmmGf-8gZBn4TvzZYOF2izXK_qf_cH5WVThg</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Nefedkin, Nikita</creator><creator>Alù, Andrea</creator><creator>Krasnok, Alex</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7419-781X</orcidid></search><sort><creationdate>202106</creationdate><title>Quantum Embedded Superstates</title><author>Nefedkin, Nikita ; Alù, Andrea ; Krasnok, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-c23d96d21dff56c1fefc3bc690a873cbeac6e630d7215c73f6c1e0077a0d85de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>quantum interference</topic><topic>quantum sensors</topic><topic>quasi‐BIC</topic><topic>supercavity modes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nefedkin, Nikita</creatorcontrib><creatorcontrib>Alù, Andrea</creatorcontrib><creatorcontrib>Krasnok, Alex</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced quantum technologies (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nefedkin, Nikita</au><au>Alù, Andrea</au><au>Krasnok, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Embedded Superstates</atitle><jtitle>Advanced quantum technologies (Online)</jtitle><date>2021-06</date><risdate>2021</risdate><volume>4</volume><issue>6</issue><epage>n/a</epage><issn>2511-9044</issn><eissn>2511-9044</eissn><abstract>Optical supercavity modes (superstates), i.e., hybrid modes emerging from the strong coupling of two modes of an open cavity, can support ultranarrow lines in their scattering spectra associated with quasi bound states in the continuum (quasi‐BIC). These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity. However, classical quasi‐BIC sensors are fundamentally limited by the shot‐noise limit, which may be overcome in quantum sensors. Here, it is shown that a three‐level quantum system (e.g., atom, quantum dot, superconducting qubit) can be tailored to support the quantum analog of superstates with an unboundedly narrow emission line. Remarkably, it is demonstrated that the coupling of such a system with a cavity (e.g., plasmonic or dielectric nanoparticle, microcavity, microwave resonator) enables sensing properties with excellent statistical features. The results can be applied to a plethora of quantum platforms, from superconducting circuits to cold atoms and quantum dots, opening exciting opportunities for quantum sensing and computing.
The work reports a quantum analogue of an embedded superstate with an infinitely narrow emission line arising in a three‐level quantum system with quantum interference between multiple atomic transition pathways. The coupling of such a three‐level V‐type quantum system with a resonator provides narrow emission spectra, giving rise to superb sensing properties with excellent statistical characteristics.</abstract><doi>10.1002/qute.202000121</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7419-781X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2511-9044 |
ispartof | Advanced quantum technologies (Online), 2021-06, Vol.4 (6), p.n/a |
issn | 2511-9044 2511-9044 |
language | eng |
recordid | cdi_crossref_primary_10_1002_qute_202000121 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | quantum interference quantum sensors quasi‐BIC supercavity modes |
title | Quantum Embedded Superstates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Embedded%20Superstates&rft.jtitle=Advanced%20quantum%20technologies%20(Online)&rft.au=Nefedkin,%20Nikita&rft.date=2021-06&rft.volume=4&rft.issue=6&rft.epage=n/a&rft.issn=2511-9044&rft.eissn=2511-9044&rft_id=info:doi/10.1002/qute.202000121&rft_dat=%3Cwiley_cross%3EQUTE202000121%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |