Matrix elements and their selection rules from ladder operator considerations

Within the Schrödinger–Infeld–Hull factorization framework it is shown that, by introducing a parameter ε in the quantization condition, that is, ε(j–|m|)=integer ≥ 0, and, thus, considering “symmetrized” ladder operators, one can use the same formulas to handle both class I (ε = +1) and class II (ε...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 1977-03, Vol.11 (3), p.451-472
Hauptverfasser: Hadinger, G., Bessis, N., Bessis, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 3
container_start_page 451
container_title International journal of quantum chemistry
container_volume 11
creator Hadinger, G.
Bessis, N.
Bessis, G.
description Within the Schrödinger–Infeld–Hull factorization framework it is shown that, by introducing a parameter ε in the quantization condition, that is, ε(j–|m|)=integer ≥ 0, and, thus, considering “symmetrized” ladder operators, one can use the same formulas to handle both class I (ε = +1) and class II (ε = −1) problems. Starting from this unified point of view, after building up the associated angular momentum operators and their ε‐dependent eigenfunctions, one unique closed‐form expression of the coupling coefficients is obtained. This expression embodies many sparse and known previous results, without being more intricate than any of them. The basic material, allowing the application of a Wignera–Eckart theorem to matrix elements of an operator on the basis of eigenfunctions of factorizable equations, and a quick determination of the associated selection rules are given. Some examples are treated as an illustration.
doi_str_mv 10.1002/qua.560110309
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_560110309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_JTMWKJR3_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3239-189a778e30fa07865134a15f872cd67e64c0c08c95acdd8ee4244df515d3de893</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYgevfcPLE632489EuIXgkYDwVvTtLNxddnFdonw710CIZ48TWbmeWeSh5BrBgMGkN58r-1ASGAMOOQnpMcgV0km2fsp6XV7SJQEfU4uYvwEAMml6pHp1Lah3FCscIl1G6mtPW0_sAw0djPXlk1Nw7rCSIvQLGllvcdAmxUG2zaBuqaOpd81HRgvyVlhq4hXh9on87vb2eghmbzcP46Gk8TxlOcJ07lVSiOHwoLSUjCeWSYKrVLnpUKZOXCgXS6s814jZmmW-UIw4blHnfM-SfZ3XWhiDFiYVSiXNmwNA7NzYToX5uii49We_ykr3P4Pm9f58G_y8KmMLW6OSRu-jFRcCbN4vjfj2XTxNH7jZsR_AQI9ctE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matrix elements and their selection rules from ladder operator considerations</title><source>Wiley Online Library All Journals</source><creator>Hadinger, G. ; Bessis, N. ; Bessis, G.</creator><creatorcontrib>Hadinger, G. ; Bessis, N. ; Bessis, G.</creatorcontrib><description>Within the Schrödinger–Infeld–Hull factorization framework it is shown that, by introducing a parameter ε in the quantization condition, that is, ε(j–|m|)=integer ≥ 0, and, thus, considering “symmetrized” ladder operators, one can use the same formulas to handle both class I (ε = +1) and class II (ε = −1) problems. Starting from this unified point of view, after building up the associated angular momentum operators and their ε‐dependent eigenfunctions, one unique closed‐form expression of the coupling coefficients is obtained. This expression embodies many sparse and known previous results, without being more intricate than any of them. The basic material, allowing the application of a Wignera–Eckart theorem to matrix elements of an operator on the basis of eigenfunctions of factorizable equations, and a quick determination of the associated selection rules are given. Some examples are treated as an illustration.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.560110309</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>International journal of quantum chemistry, 1977-03, Vol.11 (3), p.451-472</ispartof><rights>Copyright © 1977 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3239-189a778e30fa07865134a15f872cd67e64c0c08c95acdd8ee4244df515d3de893</citedby><cites>FETCH-LOGICAL-c3239-189a778e30fa07865134a15f872cd67e64c0c08c95acdd8ee4244df515d3de893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.560110309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.560110309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hadinger, G.</creatorcontrib><creatorcontrib>Bessis, N.</creatorcontrib><creatorcontrib>Bessis, G.</creatorcontrib><title>Matrix elements and their selection rules from ladder operator considerations</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>Within the Schrödinger–Infeld–Hull factorization framework it is shown that, by introducing a parameter ε in the quantization condition, that is, ε(j–|m|)=integer ≥ 0, and, thus, considering “symmetrized” ladder operators, one can use the same formulas to handle both class I (ε = +1) and class II (ε = −1) problems. Starting from this unified point of view, after building up the associated angular momentum operators and their ε‐dependent eigenfunctions, one unique closed‐form expression of the coupling coefficients is obtained. This expression embodies many sparse and known previous results, without being more intricate than any of them. The basic material, allowing the application of a Wignera–Eckart theorem to matrix elements of an operator on the basis of eigenfunctions of factorizable equations, and a quick determination of the associated selection rules are given. Some examples are treated as an illustration.</description><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujiYgevfcPLE632489EuIXgkYDwVvTtLNxddnFdonw710CIZ48TWbmeWeSh5BrBgMGkN58r-1ASGAMOOQnpMcgV0km2fsp6XV7SJQEfU4uYvwEAMml6pHp1Lah3FCscIl1G6mtPW0_sAw0djPXlk1Nw7rCSIvQLGllvcdAmxUG2zaBuqaOpd81HRgvyVlhq4hXh9on87vb2eghmbzcP46Gk8TxlOcJ07lVSiOHwoLSUjCeWSYKrVLnpUKZOXCgXS6s814jZmmW-UIw4blHnfM-SfZ3XWhiDFiYVSiXNmwNA7NzYToX5uii49We_ykr3P4Pm9f58G_y8KmMLW6OSRu-jFRcCbN4vjfj2XTxNH7jZsR_AQI9ctE</recordid><startdate>197703</startdate><enddate>197703</enddate><creator>Hadinger, G.</creator><creator>Bessis, N.</creator><creator>Bessis, G.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197703</creationdate><title>Matrix elements and their selection rules from ladder operator considerations</title><author>Hadinger, G. ; Bessis, N. ; Bessis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3239-189a778e30fa07865134a15f872cd67e64c0c08c95acdd8ee4244df515d3de893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadinger, G.</creatorcontrib><creatorcontrib>Bessis, N.</creatorcontrib><creatorcontrib>Bessis, G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadinger, G.</au><au>Bessis, N.</au><au>Bessis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix elements and their selection rules from ladder operator considerations</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>1977-03</date><risdate>1977</risdate><volume>11</volume><issue>3</issue><spage>451</spage><epage>472</epage><pages>451-472</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Within the Schrödinger–Infeld–Hull factorization framework it is shown that, by introducing a parameter ε in the quantization condition, that is, ε(j–|m|)=integer ≥ 0, and, thus, considering “symmetrized” ladder operators, one can use the same formulas to handle both class I (ε = +1) and class II (ε = −1) problems. Starting from this unified point of view, after building up the associated angular momentum operators and their ε‐dependent eigenfunctions, one unique closed‐form expression of the coupling coefficients is obtained. This expression embodies many sparse and known previous results, without being more intricate than any of them. The basic material, allowing the application of a Wignera–Eckart theorem to matrix elements of an operator on the basis of eigenfunctions of factorizable equations, and a quick determination of the associated selection rules are given. Some examples are treated as an illustration.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.560110309</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 1977-03, Vol.11 (3), p.451-472
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_560110309
source Wiley Online Library All Journals
title Matrix elements and their selection rules from ladder operator considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20elements%20and%20their%20selection%20rules%20from%20ladder%20operator%20considerations&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Hadinger,%20G.&rft.date=1977-03&rft.volume=11&rft.issue=3&rft.spage=451&rft.epage=472&rft.pages=451-472&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.560110309&rft_dat=%3Cistex_cross%3Eark_67375_WNG_JTMWKJR3_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true