Computational modeling of standard reduction potentials of B 12 cofactors

Density functional theory using a variety of functionals (i.e., BP86, B3LYP, B3LYP‐D, B3PW91, PBE1PBE, mPW1PBE, mPW3PBE, and mPW1PW91) in combination with a polarizable continuum solvent model is applied to compute the standard reduction potentials of methylcobalamin (MeCbl) and adenosylcobalamin (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2013-02, Vol.113 (4), p.479-488
Hauptverfasser: Kumar, Manoj, Galezowski, Wlodzimierz, Kozlowski, Pawel M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 4
container_start_page 479
container_title International journal of quantum chemistry
container_volume 113
creator Kumar, Manoj
Galezowski, Wlodzimierz
Kozlowski, Pawel M.
description Density functional theory using a variety of functionals (i.e., BP86, B3LYP, B3LYP‐D, B3PW91, PBE1PBE, mPW1PBE, mPW3PBE, and mPW1PW91) in combination with a polarizable continuum solvent model is applied to compute the standard reduction potentials of methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) cofactors, respectively. A fairly good agreement between experiment and theory is obtained when the reduction potentials are computed in dimethylforamide solvent using BP86/6‐31+G* level of theory. The computed reduction potentials of MeCbl and AdoCbl cofactors are predicted within 0.1–0.2 V of their experimental values. The reliability of the calibrated protocol is further testified when an acceptable degree of reproducibility (experiment vs. theory) is achieved with regard to the reduction potential of the cob(II)alamin/cob(I)alamin couple. The calibrated theoretical strategy is then exploited to understand the role of the upper axial ligand in governing the reduction potentials of alkylcobalamins. It is noted that the electron donating axial ligands tend to depress the reduction potential while electron withdrawing axial ligands (fluorinated ligands) raise the reduction potentials of the alkylcobalamins. The electronic structure calculations imply that the computed reduction potentials of alkylcobalamins are directly correlated with the energies of their lowest unoccupied molecular orbitals ( E LUMO values). Thus it is concluded that the E LUMO values of alkylcobalamins that depend upon the electronic nature of the upper axial ligands serve as the key descriptors of their reduction potentials. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/qua.24155
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_24155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_qua_24155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c745-ffc5b03c684d9da2205fccb86887f42cbefbbc84605b0be7dee7ab2d9b57abc23</originalsourceid><addsrcrecordid>eNotkLlOxDAURS0EEmGg4A_cUmR4drwkJUQsI41EMwVd5BUFJXGwnYK_JwGqW5yjWxyEbgnsCQC9_1rUnjLC-RkqCDSyZIK8n6NiZVBKAfUlukrpEwBEJWSBDm0Y5yWr3IdJDXgM1g399IGDxymryapocXR2MZuA55DdlHs1pE14xIRiE7wyOcR0jS78CtzN_-7Q6fnp1L6Wx7eXQ_twLI1kvPTecA2VETWzjVWUAvfG6FrUtfSMGu281qZmAlZNO2mdk0pT22i-rqHVDt393ZoYUorOd3PsRxW_OwLdlqBbE3S_CaofLQxQ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational modeling of standard reduction potentials of B 12 cofactors</title><source>Access via Wiley Online Library</source><creator>Kumar, Manoj ; Galezowski, Wlodzimierz ; Kozlowski, Pawel M.</creator><creatorcontrib>Kumar, Manoj ; Galezowski, Wlodzimierz ; Kozlowski, Pawel M.</creatorcontrib><description>Density functional theory using a variety of functionals (i.e., BP86, B3LYP, B3LYP‐D, B3PW91, PBE1PBE, mPW1PBE, mPW3PBE, and mPW1PW91) in combination with a polarizable continuum solvent model is applied to compute the standard reduction potentials of methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) cofactors, respectively. A fairly good agreement between experiment and theory is obtained when the reduction potentials are computed in dimethylforamide solvent using BP86/6‐31+G* level of theory. The computed reduction potentials of MeCbl and AdoCbl cofactors are predicted within 0.1–0.2 V of their experimental values. The reliability of the calibrated protocol is further testified when an acceptable degree of reproducibility (experiment vs. theory) is achieved with regard to the reduction potential of the cob(II)alamin/cob(I)alamin couple. The calibrated theoretical strategy is then exploited to understand the role of the upper axial ligand in governing the reduction potentials of alkylcobalamins. It is noted that the electron donating axial ligands tend to depress the reduction potential while electron withdrawing axial ligands (fluorinated ligands) raise the reduction potentials of the alkylcobalamins. The electronic structure calculations imply that the computed reduction potentials of alkylcobalamins are directly correlated with the energies of their lowest unoccupied molecular orbitals ( E LUMO values). Thus it is concluded that the E LUMO values of alkylcobalamins that depend upon the electronic nature of the upper axial ligands serve as the key descriptors of their reduction potentials. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.24155</identifier><language>eng</language><ispartof>International journal of quantum chemistry, 2013-02, Vol.113 (4), p.479-488</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c745-ffc5b03c684d9da2205fccb86887f42cbefbbc84605b0be7dee7ab2d9b57abc23</citedby><cites>FETCH-LOGICAL-c745-ffc5b03c684d9da2205fccb86887f42cbefbbc84605b0be7dee7ab2d9b57abc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Galezowski, Wlodzimierz</creatorcontrib><creatorcontrib>Kozlowski, Pawel M.</creatorcontrib><title>Computational modeling of standard reduction potentials of B 12 cofactors</title><title>International journal of quantum chemistry</title><description>Density functional theory using a variety of functionals (i.e., BP86, B3LYP, B3LYP‐D, B3PW91, PBE1PBE, mPW1PBE, mPW3PBE, and mPW1PW91) in combination with a polarizable continuum solvent model is applied to compute the standard reduction potentials of methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) cofactors, respectively. A fairly good agreement between experiment and theory is obtained when the reduction potentials are computed in dimethylforamide solvent using BP86/6‐31+G* level of theory. The computed reduction potentials of MeCbl and AdoCbl cofactors are predicted within 0.1–0.2 V of their experimental values. The reliability of the calibrated protocol is further testified when an acceptable degree of reproducibility (experiment vs. theory) is achieved with regard to the reduction potential of the cob(II)alamin/cob(I)alamin couple. The calibrated theoretical strategy is then exploited to understand the role of the upper axial ligand in governing the reduction potentials of alkylcobalamins. It is noted that the electron donating axial ligands tend to depress the reduction potential while electron withdrawing axial ligands (fluorinated ligands) raise the reduction potentials of the alkylcobalamins. The electronic structure calculations imply that the computed reduction potentials of alkylcobalamins are directly correlated with the energies of their lowest unoccupied molecular orbitals ( E LUMO values). Thus it is concluded that the E LUMO values of alkylcobalamins that depend upon the electronic nature of the upper axial ligands serve as the key descriptors of their reduction potentials. © 2012 Wiley Periodicals, Inc.</description><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkLlOxDAURS0EEmGg4A_cUmR4drwkJUQsI41EMwVd5BUFJXGwnYK_JwGqW5yjWxyEbgnsCQC9_1rUnjLC-RkqCDSyZIK8n6NiZVBKAfUlukrpEwBEJWSBDm0Y5yWr3IdJDXgM1g399IGDxymryapocXR2MZuA55DdlHs1pE14xIRiE7wyOcR0jS78CtzN_-7Q6fnp1L6Wx7eXQ_twLI1kvPTecA2VETWzjVWUAvfG6FrUtfSMGu281qZmAlZNO2mdk0pT22i-rqHVDt393ZoYUorOd3PsRxW_OwLdlqBbE3S_CaofLQxQ0A</recordid><startdate>20130215</startdate><enddate>20130215</enddate><creator>Kumar, Manoj</creator><creator>Galezowski, Wlodzimierz</creator><creator>Kozlowski, Pawel M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130215</creationdate><title>Computational modeling of standard reduction potentials of B 12 cofactors</title><author>Kumar, Manoj ; Galezowski, Wlodzimierz ; Kozlowski, Pawel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c745-ffc5b03c684d9da2205fccb86887f42cbefbbc84605b0be7dee7ab2d9b57abc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Galezowski, Wlodzimierz</creatorcontrib><creatorcontrib>Kozlowski, Pawel M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Galezowski, Wlodzimierz</au><au>Kozlowski, Pawel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling of standard reduction potentials of B 12 cofactors</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2013-02-15</date><risdate>2013</risdate><volume>113</volume><issue>4</issue><spage>479</spage><epage>488</epage><pages>479-488</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Density functional theory using a variety of functionals (i.e., BP86, B3LYP, B3LYP‐D, B3PW91, PBE1PBE, mPW1PBE, mPW3PBE, and mPW1PW91) in combination with a polarizable continuum solvent model is applied to compute the standard reduction potentials of methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) cofactors, respectively. A fairly good agreement between experiment and theory is obtained when the reduction potentials are computed in dimethylforamide solvent using BP86/6‐31+G* level of theory. The computed reduction potentials of MeCbl and AdoCbl cofactors are predicted within 0.1–0.2 V of their experimental values. The reliability of the calibrated protocol is further testified when an acceptable degree of reproducibility (experiment vs. theory) is achieved with regard to the reduction potential of the cob(II)alamin/cob(I)alamin couple. The calibrated theoretical strategy is then exploited to understand the role of the upper axial ligand in governing the reduction potentials of alkylcobalamins. It is noted that the electron donating axial ligands tend to depress the reduction potential while electron withdrawing axial ligands (fluorinated ligands) raise the reduction potentials of the alkylcobalamins. The electronic structure calculations imply that the computed reduction potentials of alkylcobalamins are directly correlated with the energies of their lowest unoccupied molecular orbitals ( E LUMO values). Thus it is concluded that the E LUMO values of alkylcobalamins that depend upon the electronic nature of the upper axial ligands serve as the key descriptors of their reduction potentials. © 2012 Wiley Periodicals, Inc.</abstract><doi>10.1002/qua.24155</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2013-02, Vol.113 (4), p.479-488
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_24155
source Access via Wiley Online Library
title Computational modeling of standard reduction potentials of B 12 cofactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20of%20standard%20reduction%20potentials%20of%20B%2012%20cofactors&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Kumar,%20Manoj&rft.date=2013-02-15&rft.volume=113&rft.issue=4&rft.spage=479&rft.epage=488&rft.pages=479-488&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.24155&rft_dat=%3Ccrossref%3E10_1002_qua_24155%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true