Interstitial water and the formation of low barrier hydrogen bonds: A computational model study

The B3LYP/D95+(d,p) analysis of the uncharged low barrier hydrogen bond (LBHB) between 4‐methyl‐1H‐imidazole (Mim) and acetic acid (HAc) shows that uncharged LBHBs can be formed either by adding three water molecules around the cluster or by placing the Mim–HAc pair in a dielectric environment creat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2012-03, Vol.112 (5), p.1460-1472
Hauptverfasser: Lao, Ka-Un, Lankau, Timm, Fang, Teng-I, Zou, Jian-Wei, Yu, Chin-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1472
container_issue 5
container_start_page 1460
container_title International journal of quantum chemistry
container_volume 112
creator Lao, Ka-Un
Lankau, Timm
Fang, Teng-I
Zou, Jian-Wei
Yu, Chin-Hui
description The B3LYP/D95+(d,p) analysis of the uncharged low barrier hydrogen bond (LBHB) between 4‐methyl‐1H‐imidazole (Mim) and acetic acid (HAc) shows that uncharged LBHBs can be formed either by adding three water molecules around the cluster or by placing the Mim–HAc pair in a dielectric environment created by a polarizable continuum model with a permittivity larger than 20.7. The permittivity of environment around uncharged LBHB can be lowered significantly by including water molecules into the system. A Mim–HAc LBHB stabilized with one water molecule observed in diethyl ether (ε = 4.34), with two water molecules in toluene (ε = 2.38), and with three water molecules in vacuo (ε = 1). Solvation models with different numbers of water molecules predict average differences in the proton affinities of the hydrogen bonded bases (ΔPA) for stable uncharged LBHB systems in vacuo to be 91.5 kcal/mol being different from the ΔPA values close to zero in charge‐assisted LBHB systems. The results clearly indicate that small amounts of interstitial water molecules at the active site of enzymes do not preclude the existence of LBHBs in biological catalysis. Our results also show that interstitial water molecules provide a useful clue in the search for uncharged LBHBs in an enzymatic environment and the number of water molecules can be used as a relative measure for the polarity around the direct environment of LBHBs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
doi_str_mv 10.1002/qua.23140
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_23140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUA23140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3070-79080b448311aebdcc29a9b095da2918f65095c11dac31aeab998d3956552aad3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A185ZB2HefP3KqKlkoFhKDAzdrEDg2kcbFTlbw9pgVunHZX-81oNIScMxgwgHD4scFByFkEB6THQKRBlLCXQ9LzPwjSBLJjcuLcGwAkPEl7RM6aVlvXVm2FNd2iPyg2irZLTUtjV9hWpqGmpLXZ0hytrTyw7JQ1r7qhuWmUu6QjWpjVetPuYG-zMkrX1LUb1Z2SoxJrp89-Zp8sJleP4-tgfjedjUfzoOCQ-mQCMsijKOOMoc5VUYQCRQ4iVhgKlpVJ7PeCMYUF9wTmQmSKiziJ4xBR8T652PsW1jhndSnXtlqh7SQD-d2M9M3IXTOeHe7ZbVXr7n9Q3i9Gv4pgr6hcqz__FGjfZZLyNJbPt1MJ8JBOJ-MnecO_ANj7dYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interstitial water and the formation of low barrier hydrogen bonds: A computational model study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lao, Ka-Un ; Lankau, Timm ; Fang, Teng-I ; Zou, Jian-Wei ; Yu, Chin-Hui</creator><creatorcontrib>Lao, Ka-Un ; Lankau, Timm ; Fang, Teng-I ; Zou, Jian-Wei ; Yu, Chin-Hui</creatorcontrib><description>The B3LYP/D95+(d,p) analysis of the uncharged low barrier hydrogen bond (LBHB) between 4‐methyl‐1H‐imidazole (Mim) and acetic acid (HAc) shows that uncharged LBHBs can be formed either by adding three water molecules around the cluster or by placing the Mim–HAc pair in a dielectric environment created by a polarizable continuum model with a permittivity larger than 20.7. The permittivity of environment around uncharged LBHB can be lowered significantly by including water molecules into the system. A Mim–HAc LBHB stabilized with one water molecule observed in diethyl ether (ε = 4.34), with two water molecules in toluene (ε = 2.38), and with three water molecules in vacuo (ε = 1). Solvation models with different numbers of water molecules predict average differences in the proton affinities of the hydrogen bonded bases (ΔPA) for stable uncharged LBHB systems in vacuo to be 91.5 kcal/mol being different from the ΔPA values close to zero in charge‐assisted LBHB systems. The results clearly indicate that small amounts of interstitial water molecules at the active site of enzymes do not preclude the existence of LBHBs in biological catalysis. Our results also show that interstitial water molecules provide a useful clue in the search for uncharged LBHBs in an enzymatic environment and the number of water molecules can be used as a relative measure for the polarity around the direct environment of LBHBs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.23140</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>DFT ; low barrier hydrogen bonds ; macrosolvation ; microsolvation ; proton affinities</subject><ispartof>International journal of quantum chemistry, 2012-03, Vol.112 (5), p.1460-1472</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3070-79080b448311aebdcc29a9b095da2918f65095c11dac31aeab998d3956552aad3</citedby><cites>FETCH-LOGICAL-c3070-79080b448311aebdcc29a9b095da2918f65095c11dac31aeab998d3956552aad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.23140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.23140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Lao, Ka-Un</creatorcontrib><creatorcontrib>Lankau, Timm</creatorcontrib><creatorcontrib>Fang, Teng-I</creatorcontrib><creatorcontrib>Zou, Jian-Wei</creatorcontrib><creatorcontrib>Yu, Chin-Hui</creatorcontrib><title>Interstitial water and the formation of low barrier hydrogen bonds: A computational model study</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>The B3LYP/D95+(d,p) analysis of the uncharged low barrier hydrogen bond (LBHB) between 4‐methyl‐1H‐imidazole (Mim) and acetic acid (HAc) shows that uncharged LBHBs can be formed either by adding three water molecules around the cluster or by placing the Mim–HAc pair in a dielectric environment created by a polarizable continuum model with a permittivity larger than 20.7. The permittivity of environment around uncharged LBHB can be lowered significantly by including water molecules into the system. A Mim–HAc LBHB stabilized with one water molecule observed in diethyl ether (ε = 4.34), with two water molecules in toluene (ε = 2.38), and with three water molecules in vacuo (ε = 1). Solvation models with different numbers of water molecules predict average differences in the proton affinities of the hydrogen bonded bases (ΔPA) for stable uncharged LBHB systems in vacuo to be 91.5 kcal/mol being different from the ΔPA values close to zero in charge‐assisted LBHB systems. The results clearly indicate that small amounts of interstitial water molecules at the active site of enzymes do not preclude the existence of LBHBs in biological catalysis. Our results also show that interstitial water molecules provide a useful clue in the search for uncharged LBHBs in an enzymatic environment and the number of water molecules can be used as a relative measure for the polarity around the direct environment of LBHBs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012</description><subject>DFT</subject><subject>low barrier hydrogen bonds</subject><subject>macrosolvation</subject><subject>microsolvation</subject><subject>proton affinities</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A185ZB2HefP3KqKlkoFhKDAzdrEDg2kcbFTlbw9pgVunHZX-81oNIScMxgwgHD4scFByFkEB6THQKRBlLCXQ9LzPwjSBLJjcuLcGwAkPEl7RM6aVlvXVm2FNd2iPyg2irZLTUtjV9hWpqGmpLXZ0hytrTyw7JQ1r7qhuWmUu6QjWpjVetPuYG-zMkrX1LUb1Z2SoxJrp89-Zp8sJleP4-tgfjedjUfzoOCQ-mQCMsijKOOMoc5VUYQCRQ4iVhgKlpVJ7PeCMYUF9wTmQmSKiziJ4xBR8T652PsW1jhndSnXtlqh7SQD-d2M9M3IXTOeHe7ZbVXr7n9Q3i9Gv4pgr6hcqz__FGjfZZLyNJbPt1MJ8JBOJ-MnecO_ANj7dYk</recordid><startdate>20120305</startdate><enddate>20120305</enddate><creator>Lao, Ka-Un</creator><creator>Lankau, Timm</creator><creator>Fang, Teng-I</creator><creator>Zou, Jian-Wei</creator><creator>Yu, Chin-Hui</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120305</creationdate><title>Interstitial water and the formation of low barrier hydrogen bonds: A computational model study</title><author>Lao, Ka-Un ; Lankau, Timm ; Fang, Teng-I ; Zou, Jian-Wei ; Yu, Chin-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3070-79080b448311aebdcc29a9b095da2918f65095c11dac31aeab998d3956552aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>DFT</topic><topic>low barrier hydrogen bonds</topic><topic>macrosolvation</topic><topic>microsolvation</topic><topic>proton affinities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Ka-Un</creatorcontrib><creatorcontrib>Lankau, Timm</creatorcontrib><creatorcontrib>Fang, Teng-I</creatorcontrib><creatorcontrib>Zou, Jian-Wei</creatorcontrib><creatorcontrib>Yu, Chin-Hui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Ka-Un</au><au>Lankau, Timm</au><au>Fang, Teng-I</au><au>Zou, Jian-Wei</au><au>Yu, Chin-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interstitial water and the formation of low barrier hydrogen bonds: A computational model study</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2012-03-05</date><risdate>2012</risdate><volume>112</volume><issue>5</issue><spage>1460</spage><epage>1472</epage><pages>1460-1472</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>The B3LYP/D95+(d,p) analysis of the uncharged low barrier hydrogen bond (LBHB) between 4‐methyl‐1H‐imidazole (Mim) and acetic acid (HAc) shows that uncharged LBHBs can be formed either by adding three water molecules around the cluster or by placing the Mim–HAc pair in a dielectric environment created by a polarizable continuum model with a permittivity larger than 20.7. The permittivity of environment around uncharged LBHB can be lowered significantly by including water molecules into the system. A Mim–HAc LBHB stabilized with one water molecule observed in diethyl ether (ε = 4.34), with two water molecules in toluene (ε = 2.38), and with three water molecules in vacuo (ε = 1). Solvation models with different numbers of water molecules predict average differences in the proton affinities of the hydrogen bonded bases (ΔPA) for stable uncharged LBHB systems in vacuo to be 91.5 kcal/mol being different from the ΔPA values close to zero in charge‐assisted LBHB systems. The results clearly indicate that small amounts of interstitial water molecules at the active site of enzymes do not preclude the existence of LBHBs in biological catalysis. Our results also show that interstitial water molecules provide a useful clue in the search for uncharged LBHBs in an enzymatic environment and the number of water molecules can be used as a relative measure for the polarity around the direct environment of LBHBs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.23140</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2012-03, Vol.112 (5), p.1460-1472
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_23140
source Wiley Online Library Journals Frontfile Complete
subjects DFT
low barrier hydrogen bonds
macrosolvation
microsolvation
proton affinities
title Interstitial water and the formation of low barrier hydrogen bonds: A computational model study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interstitial%20water%20and%20the%20formation%20of%20low%20barrier%20hydrogen%20bonds:%20A%20computational%20model%20study&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Lao,%20Ka-Un&rft.date=2012-03-05&rft.volume=112&rft.issue=5&rft.spage=1460&rft.epage=1472&rft.pages=1460-1472&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.23140&rft_dat=%3Cwiley_cross%3EQUA23140%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true