An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method

An efficient recursive algorithm is presented to compute orbital‐level Hamiltonian matrices for wave functions expanded in a basis of graphically contracted functions (GCF). Each GCF depends on a nonlinear set of parameters called arc factors. The orbital‐level Hamiltonian matrices characterize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2010-12, Vol.110 (15), p.2938-2948
Hauptverfasser: Shepard, Ron, Gidofalvi, Gergely, Hovland, Paul D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2948
container_issue 15
container_start_page 2938
container_title International journal of quantum chemistry
container_volume 110
creator Shepard, Ron
Gidofalvi, Gergely
Hovland, Paul D.
description An efficient recursive algorithm is presented to compute orbital‐level Hamiltonian matrices for wave functions expanded in a basis of graphically contracted functions (GCF). Each GCF depends on a nonlinear set of parameters called arc factors. The orbital‐level Hamiltonian matrices characterize the dependence of the energy on the wave function changes associated with a subset of these nonlinear parameters corresponding to an individual molecular orbital. From these Hamiltonian matrices, gradients with respect to the nonlinear arc factor parameters may be computed and other arc factor optimization algorithms may be used. The recursive algorithm allows the orbital‐level Hamiltonian matrices to be computed with O(N 2GCFωn4) total effort, where NGCF is the dimension of the GCF basis, n is the dimension of the orbital basis, and where the scale factor ω depends on the number of electrons N and ranges from O(N0) to O(N2) depending on the complexity of the underlying Shavitt graph. This effort is about two to five times that required to compute an energy expectation value for a given set of arc factors; thus the energy and gradient have the same scaling behavior with increasing molecule size, NGCF dimension, and orbital basis size. Timings are given for wave functions that correspond to configuration state function expansions over 1073 in length, many orders of magnitude larger than can be considered using traditional electronic structure methods. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010
doi_str_mv 10.1002/qua.22867
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_22867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_5W0CSMCW_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-cd2bf35bfcd041fb19602b510e528ce10102dac9b399f928cfd89929112a15be3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUw8A-8MqS1nebhsYp4SQWEoCqb5Th2Y0jiYDuUsvDXSVseE9PVPed8ZzgAnGI0wgiR8WvHR4SkcbIHBhjRJJjE-GkfDHoPBUmM0kNw5NwzQigO42QAPqcNlEppoWXjoZWis06_ScirpbHalzX0BgpTt52XcMV7R3WN8No00LRe1_qDb5-l5cWmwkFlLPSl3ChtqQWvqnVf0HjLhZfFH15LX5riGBwoXjl58n2HYH5x_phdBbO7y-tsOgtEmIRJIAqSqzDKlSjQBKsc0xiRPMJIRiQVEiOMSMEFzUNKFe0lVaSUEoox4TjKZTgEZ7teYY1zVirWWl1zu2YYsc1yrF-ObZfrs-NddqUruf4_yO7n0x8i2BHaefn-S3D7wno3idji9pJFC5Q93GQLNgu_AMt8g1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Shepard, Ron ; Gidofalvi, Gergely ; Hovland, Paul D.</creator><creatorcontrib>Shepard, Ron ; Gidofalvi, Gergely ; Hovland, Paul D.</creatorcontrib><description>An efficient recursive algorithm is presented to compute orbital‐level Hamiltonian matrices for wave functions expanded in a basis of graphically contracted functions (GCF). Each GCF depends on a nonlinear set of parameters called arc factors. The orbital‐level Hamiltonian matrices characterize the dependence of the energy on the wave function changes associated with a subset of these nonlinear parameters corresponding to an individual molecular orbital. From these Hamiltonian matrices, gradients with respect to the nonlinear arc factor parameters may be computed and other arc factor optimization algorithms may be used. The recursive algorithm allows the orbital‐level Hamiltonian matrices to be computed with O(N 2GCFωn4) total effort, where NGCF is the dimension of the GCF basis, n is the dimension of the orbital basis, and where the scale factor ω depends on the number of electrons N and ranges from O(N0) to O(N2) depending on the complexity of the underlying Shavitt graph. This effort is about two to five times that required to compute an energy expectation value for a given set of arc factors; thus the energy and gradient have the same scaling behavior with increasing molecule size, NGCF dimension, and orbital basis size. Timings are given for wave functions that correspond to configuration state function expansions over 1073 in length, many orders of magnitude larger than can be considered using traditional electronic structure methods. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.22867</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>electronic structure method ; gradient ; graphical unitary group approach ; graphically contracted function ; optimization</subject><ispartof>International journal of quantum chemistry, 2010-12, Vol.110 (15), p.2938-2948</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-cd2bf35bfcd041fb19602b510e528ce10102dac9b399f928cfd89929112a15be3</citedby><cites>FETCH-LOGICAL-c3737-cd2bf35bfcd041fb19602b510e528ce10102dac9b399f928cfd89929112a15be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.22867$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.22867$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Shepard, Ron</creatorcontrib><creatorcontrib>Gidofalvi, Gergely</creatorcontrib><creatorcontrib>Hovland, Paul D.</creatorcontrib><title>An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>An efficient recursive algorithm is presented to compute orbital‐level Hamiltonian matrices for wave functions expanded in a basis of graphically contracted functions (GCF). Each GCF depends on a nonlinear set of parameters called arc factors. The orbital‐level Hamiltonian matrices characterize the dependence of the energy on the wave function changes associated with a subset of these nonlinear parameters corresponding to an individual molecular orbital. From these Hamiltonian matrices, gradients with respect to the nonlinear arc factor parameters may be computed and other arc factor optimization algorithms may be used. The recursive algorithm allows the orbital‐level Hamiltonian matrices to be computed with O(N 2GCFωn4) total effort, where NGCF is the dimension of the GCF basis, n is the dimension of the orbital basis, and where the scale factor ω depends on the number of electrons N and ranges from O(N0) to O(N2) depending on the complexity of the underlying Shavitt graph. This effort is about two to five times that required to compute an energy expectation value for a given set of arc factors; thus the energy and gradient have the same scaling behavior with increasing molecule size, NGCF dimension, and orbital basis size. Timings are given for wave functions that correspond to configuration state function expansions over 1073 in length, many orders of magnitude larger than can be considered using traditional electronic structure methods. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010</description><subject>electronic structure method</subject><subject>gradient</subject><subject>graphical unitary group approach</subject><subject>graphically contracted function</subject><subject>optimization</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqUw8A-8MqS1nebhsYp4SQWEoCqb5Th2Y0jiYDuUsvDXSVseE9PVPed8ZzgAnGI0wgiR8WvHR4SkcbIHBhjRJJjE-GkfDHoPBUmM0kNw5NwzQigO42QAPqcNlEppoWXjoZWis06_ScirpbHalzX0BgpTt52XcMV7R3WN8No00LRe1_qDb5-l5cWmwkFlLPSl3ChtqQWvqnVf0HjLhZfFH15LX5riGBwoXjl58n2HYH5x_phdBbO7y-tsOgtEmIRJIAqSqzDKlSjQBKsc0xiRPMJIRiQVEiOMSMEFzUNKFe0lVaSUEoox4TjKZTgEZ7teYY1zVirWWl1zu2YYsc1yrF-ObZfrs-NddqUruf4_yO7n0x8i2BHaefn-S3D7wno3idji9pJFC5Q93GQLNgu_AMt8g1M</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Shepard, Ron</creator><creator>Gidofalvi, Gergely</creator><creator>Hovland, Paul D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201012</creationdate><title>An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method</title><author>Shepard, Ron ; Gidofalvi, Gergely ; Hovland, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-cd2bf35bfcd041fb19602b510e528ce10102dac9b399f928cfd89929112a15be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>electronic structure method</topic><topic>gradient</topic><topic>graphical unitary group approach</topic><topic>graphically contracted function</topic><topic>optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shepard, Ron</creatorcontrib><creatorcontrib>Gidofalvi, Gergely</creatorcontrib><creatorcontrib>Hovland, Paul D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shepard, Ron</au><au>Gidofalvi, Gergely</au><au>Hovland, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2010-12</date><risdate>2010</risdate><volume>110</volume><issue>15</issue><spage>2938</spage><epage>2948</epage><pages>2938-2948</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>An efficient recursive algorithm is presented to compute orbital‐level Hamiltonian matrices for wave functions expanded in a basis of graphically contracted functions (GCF). Each GCF depends on a nonlinear set of parameters called arc factors. The orbital‐level Hamiltonian matrices characterize the dependence of the energy on the wave function changes associated with a subset of these nonlinear parameters corresponding to an individual molecular orbital. From these Hamiltonian matrices, gradients with respect to the nonlinear arc factor parameters may be computed and other arc factor optimization algorithms may be used. The recursive algorithm allows the orbital‐level Hamiltonian matrices to be computed with O(N 2GCFωn4) total effort, where NGCF is the dimension of the GCF basis, n is the dimension of the orbital basis, and where the scale factor ω depends on the number of electrons N and ranges from O(N0) to O(N2) depending on the complexity of the underlying Shavitt graph. This effort is about two to five times that required to compute an energy expectation value for a given set of arc factors; thus the energy and gradient have the same scaling behavior with increasing molecule size, NGCF dimension, and orbital basis size. Timings are given for wave functions that correspond to configuration state function expansions over 1073 in length, many orders of magnitude larger than can be considered using traditional electronic structure methods. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.22867</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2010-12, Vol.110 (15), p.2938-2948
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_22867
source Wiley Online Library - AutoHoldings Journals
subjects electronic structure method
gradient
graphical unitary group approach
graphically contracted function
optimization
title An efficient recursive algorithm to compute wave function optimization gradients for the graphically contracted function method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20recursive%20algorithm%20to%20compute%20wave%20function%20optimization%20gradients%20for%20the%20graphically%20contracted%20function%20method&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Shepard,%20Ron&rft.date=2010-12&rft.volume=110&rft.issue=15&rft.spage=2938&rft.epage=2948&rft.pages=2938-2948&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.22867&rft_dat=%3Cistex_cross%3Eark_67375_WNG_5W0CSMCW_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true