GSA algorithm applied to electronic structure: Hartree-Fock-GSA method

A stochastical algorithm to investigate the real closed‐shell Hartree–Fock problem is proposed. The approach is based on a global optimization method, the generalized simulated annealing. We tested this methodology by determining the Hartree–Fock ground state of the H2, LiH, BH, Li2, OH−, FH, CO, N2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2005, Vol.103 (5), p.493-499
Hauptverfasser: de Andrade, M. D., Mundim, K. C., Malbouisson, L. A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue 5
container_start_page 493
container_title International journal of quantum chemistry
container_volume 103
creator de Andrade, M. D.
Mundim, K. C.
Malbouisson, L. A. C.
description A stochastical algorithm to investigate the real closed‐shell Hartree–Fock problem is proposed. The approach is based on a global optimization method, the generalized simulated annealing. We tested this methodology by determining the Hartree–Fock ground state of the H2, LiH, BH, Li2, OH−, FH, CO, N2, BeH2, CH2, H2O, NH3, HCHO, CH4 molecular systems using minimal, double‐zeta, and triple‐zeta bases. The main characteristic of this method is that it enables mapping the electronic hypersurface to find minima with the guarantee of finding the absolute minimum of the functional in focus. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005
doi_str_mv 10.1002/qua.20580
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_20580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_3BF5CVNT_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3070-3b9fc2c0dc9d1dec1a3ce2c5d78b11141e59c1a37c86f430c4de3a2c8934d4cc3</originalsourceid><addsrcrecordid>eNp1kMFOwkAQQDdGExE9-Ae9eliY7bbd1hsSCyYEo4J62yyzU6kUi9slyt8Lot48TTLz3hweY-cCOgIg7L6vTSeEOIUD1hKQKR4l4vmQtbY34CqB9JidNM0rACQyUS2WDx56galealf6-TIwq1VVkg18HVBF6F39VmLQeLdGv3Z0GQyN846I5zUu-M5dkp_X9pQdFaZq6Oxnttk0v570h3x0O7jp90YcJSjgcpYVGCJYzKywhMJIpBBjq9KZECISFGe7pcI0KSIJGFmSJsQ0k5GNEGWbXez_oqubxlGhV65cGrfRAvQugN4G0N8Btmx3z36UFW3-B_XdtPdr8L1RNp4-_wzjFjpRUsX6aTzQ8iqP-4_jib6XX3LVbFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GSA algorithm applied to electronic structure: Hartree-Fock-GSA method</title><source>Access via Wiley Online Library</source><creator>de Andrade, M. D. ; Mundim, K. C. ; Malbouisson, L. A. C.</creator><creatorcontrib>de Andrade, M. D. ; Mundim, K. C. ; Malbouisson, L. A. C.</creatorcontrib><description>A stochastical algorithm to investigate the real closed‐shell Hartree–Fock problem is proposed. The approach is based on a global optimization method, the generalized simulated annealing. We tested this methodology by determining the Hartree–Fock ground state of the H2, LiH, BH, Li2, OH−, FH, CO, N2, BeH2, CH2, H2O, NH3, HCHO, CH4 molecular systems using minimal, double‐zeta, and triple‐zeta bases. The main characteristic of this method is that it enables mapping the electronic hypersurface to find minima with the guarantee of finding the absolute minimum of the functional in focus. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.20580</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>absolute minimum ; electronic structure ; generalized simulated annealing ; Hartree-Fock ; stochastic Hartree-Fock algorithm</subject><ispartof>International journal of quantum chemistry, 2005, Vol.103 (5), p.493-499</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3070-3b9fc2c0dc9d1dec1a3ce2c5d78b11141e59c1a37c86f430c4de3a2c8934d4cc3</citedby><cites>FETCH-LOGICAL-c3070-3b9fc2c0dc9d1dec1a3ce2c5d78b11141e59c1a37c86f430c4de3a2c8934d4cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.20580$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.20580$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,4028,27932,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>de Andrade, M. D.</creatorcontrib><creatorcontrib>Mundim, K. C.</creatorcontrib><creatorcontrib>Malbouisson, L. A. C.</creatorcontrib><title>GSA algorithm applied to electronic structure: Hartree-Fock-GSA method</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>A stochastical algorithm to investigate the real closed‐shell Hartree–Fock problem is proposed. The approach is based on a global optimization method, the generalized simulated annealing. We tested this methodology by determining the Hartree–Fock ground state of the H2, LiH, BH, Li2, OH−, FH, CO, N2, BeH2, CH2, H2O, NH3, HCHO, CH4 molecular systems using minimal, double‐zeta, and triple‐zeta bases. The main characteristic of this method is that it enables mapping the electronic hypersurface to find minima with the guarantee of finding the absolute minimum of the functional in focus. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005</description><subject>absolute minimum</subject><subject>electronic structure</subject><subject>generalized simulated annealing</subject><subject>Hartree-Fock</subject><subject>stochastic Hartree-Fock algorithm</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwkAQQDdGExE9-Ae9eliY7bbd1hsSCyYEo4J62yyzU6kUi9slyt8Lot48TTLz3hweY-cCOgIg7L6vTSeEOIUD1hKQKR4l4vmQtbY34CqB9JidNM0rACQyUS2WDx56galealf6-TIwq1VVkg18HVBF6F39VmLQeLdGv3Z0GQyN846I5zUu-M5dkp_X9pQdFaZq6Oxnttk0v570h3x0O7jp90YcJSjgcpYVGCJYzKywhMJIpBBjq9KZECISFGe7pcI0KSIJGFmSJsQ0k5GNEGWbXez_oqubxlGhV65cGrfRAvQugN4G0N8Btmx3z36UFW3-B_XdtPdr8L1RNp4-_wzjFjpRUsX6aTzQ8iqP-4_jib6XX3LVbFU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>de Andrade, M. D.</creator><creator>Mundim, K. C.</creator><creator>Malbouisson, L. A. C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>GSA algorithm applied to electronic structure: Hartree-Fock-GSA method</title><author>de Andrade, M. D. ; Mundim, K. C. ; Malbouisson, L. A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3070-3b9fc2c0dc9d1dec1a3ce2c5d78b11141e59c1a37c86f430c4de3a2c8934d4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>absolute minimum</topic><topic>electronic structure</topic><topic>generalized simulated annealing</topic><topic>Hartree-Fock</topic><topic>stochastic Hartree-Fock algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Andrade, M. D.</creatorcontrib><creatorcontrib>Mundim, K. C.</creatorcontrib><creatorcontrib>Malbouisson, L. A. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Andrade, M. D.</au><au>Mundim, K. C.</au><au>Malbouisson, L. A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GSA algorithm applied to electronic structure: Hartree-Fock-GSA method</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2005</date><risdate>2005</risdate><volume>103</volume><issue>5</issue><spage>493</spage><epage>499</epage><pages>493-499</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>A stochastical algorithm to investigate the real closed‐shell Hartree–Fock problem is proposed. The approach is based on a global optimization method, the generalized simulated annealing. We tested this methodology by determining the Hartree–Fock ground state of the H2, LiH, BH, Li2, OH−, FH, CO, N2, BeH2, CH2, H2O, NH3, HCHO, CH4 molecular systems using minimal, double‐zeta, and triple‐zeta bases. The main characteristic of this method is that it enables mapping the electronic hypersurface to find minima with the guarantee of finding the absolute minimum of the functional in focus. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.20580</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2005, Vol.103 (5), p.493-499
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_20580
source Access via Wiley Online Library
subjects absolute minimum
electronic structure
generalized simulated annealing
Hartree-Fock
stochastic Hartree-Fock algorithm
title GSA algorithm applied to electronic structure: Hartree-Fock-GSA method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GSA%20algorithm%20applied%20to%20electronic%20structure:%20Hartree-Fock-GSA%20method&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=de%20Andrade,%20M.%20D.&rft.date=2005&rft.volume=103&rft.issue=5&rft.spage=493&rft.epage=499&rft.pages=493-499&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.20580&rft_dat=%3Cistex_cross%3Eark_67375_WNG_3BF5CVNT_R%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true