Soft cohesive forces

We discuss dispersion forces, beginning with toy models that illustrate the limitations of various standard approaches. For metallic cohesion of very thin layers, we show that because the local density approximation (LDA) misses distant dispersion interactions, it also makes significant errors in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2005, Vol.101 (5), p.579-598
Hauptverfasser: Dobson, John F., Wang, Jun, Dinte, Bradley P., McLennan, Keith, Le, Hung M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 5
container_start_page 579
container_title International journal of quantum chemistry
container_volume 101
creator Dobson, John F.
Wang, Jun
Dinte, Bradley P.
McLennan, Keith
Le, Hung M.
description We discuss dispersion forces, beginning with toy models that illustrate the limitations of various standard approaches. For metallic cohesion of very thin layers, we show that because the local density approximation (LDA) misses distant dispersion interactions, it also makes significant errors in the maximum cohesive force, a short‐ranged property. Furthermore, perturbative methods fail for such large planar systems, and CI methods are impractical. For large planar and linear systems in the well‐separated limit we show that insulating and metallic systems can exhibit very different dispersion forces, pairwise summation of atomic R−6 terms failing for the metallic cases. This could have implications for the interaction between nanotubes and between graphene planes: these planes are zero‐gap insulators at large separation and weak metals at graphitic equilibrium. Graphitic cohesion and intercalation are fundamental to a hydrogen economy and to various nanotechnologies, yet our arguments strongly suggest that all standard methods are inadequate for these phenomena. We argue that nonlocal RPA‐like correlation energy formulae contain all the required “seamless” physics of long‐ and short‐ranged interaction, as needed for graphitic and other soft‐matter systems. Indeed full calculations of this type are currently being attempted for graphite, and appear to be very delicate. We discuss recent efforts to approximate these calculations, and propose a new scheme. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005
doi_str_mv 10.1002/qua.20314
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_20314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUA20314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-cfe8ba992afbcc2840d479f4839cb20d3ab96c40da2f20260c3bc6bf176abf0f3</originalsourceid><addsrcrecordid>eNp1j01LAzEQQIMouFYPgj-gVw9pJ5k02RxLtVVYlaJFbyFJE1ytrCb1o__e1VVvngZm3ht4hBwyGDAAPnx5tQMOyMQWKRhoRYVkd9ukaG9AlYRyl-zl_AAAEqUqyNF1E9d939yHXL-FfmySD3mf7ES7yuHgZ_bIYnp6Mzmj1dXsfDKuqEeFgvoYSme15jY673kpYCmUjqJE7R2HJVqnpW-3lkcOXIJH56WLTEnrIkTskePur09NzilE85zqJ5s2hoH5yjFtjvnOadlhx77Xq7D5HzTzxfjXoJ1R53X4-DNsejRSoRqZ28uZEScX1XyE2nD8BL9SWhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soft cohesive forces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dobson, John F. ; Wang, Jun ; Dinte, Bradley P. ; McLennan, Keith ; Le, Hung M.</creator><creatorcontrib>Dobson, John F. ; Wang, Jun ; Dinte, Bradley P. ; McLennan, Keith ; Le, Hung M.</creatorcontrib><description>We discuss dispersion forces, beginning with toy models that illustrate the limitations of various standard approaches. For metallic cohesion of very thin layers, we show that because the local density approximation (LDA) misses distant dispersion interactions, it also makes significant errors in the maximum cohesive force, a short‐ranged property. Furthermore, perturbative methods fail for such large planar systems, and CI methods are impractical. For large planar and linear systems in the well‐separated limit we show that insulating and metallic systems can exhibit very different dispersion forces, pairwise summation of atomic R−6 terms failing for the metallic cases. This could have implications for the interaction between nanotubes and between graphene planes: these planes are zero‐gap insulators at large separation and weak metals at graphitic equilibrium. Graphitic cohesion and intercalation are fundamental to a hydrogen economy and to various nanotechnologies, yet our arguments strongly suggest that all standard methods are inadequate for these phenomena. We argue that nonlocal RPA‐like correlation energy formulae contain all the required “seamless” physics of long‐ and short‐ranged interaction, as needed for graphitic and other soft‐matter systems. Indeed full calculations of this type are currently being attempted for graphite, and appear to be very delicate. We discuss recent efforts to approximate these calculations, and propose a new scheme. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.20314</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>density functional theory ; dispersion interaction ; graphitic cohesion ; soft matter ; van der Waals force</subject><ispartof>International journal of quantum chemistry, 2005, Vol.101 (5), p.579-598</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-cfe8ba992afbcc2840d479f4839cb20d3ab96c40da2f20260c3bc6bf176abf0f3</citedby><cites>FETCH-LOGICAL-c3734-cfe8ba992afbcc2840d479f4839cb20d3ab96c40da2f20260c3bc6bf176abf0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.20314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.20314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dobson, John F.</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Dinte, Bradley P.</creatorcontrib><creatorcontrib>McLennan, Keith</creatorcontrib><creatorcontrib>Le, Hung M.</creatorcontrib><title>Soft cohesive forces</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>We discuss dispersion forces, beginning with toy models that illustrate the limitations of various standard approaches. For metallic cohesion of very thin layers, we show that because the local density approximation (LDA) misses distant dispersion interactions, it also makes significant errors in the maximum cohesive force, a short‐ranged property. Furthermore, perturbative methods fail for such large planar systems, and CI methods are impractical. For large planar and linear systems in the well‐separated limit we show that insulating and metallic systems can exhibit very different dispersion forces, pairwise summation of atomic R−6 terms failing for the metallic cases. This could have implications for the interaction between nanotubes and between graphene planes: these planes are zero‐gap insulators at large separation and weak metals at graphitic equilibrium. Graphitic cohesion and intercalation are fundamental to a hydrogen economy and to various nanotechnologies, yet our arguments strongly suggest that all standard methods are inadequate for these phenomena. We argue that nonlocal RPA‐like correlation energy formulae contain all the required “seamless” physics of long‐ and short‐ranged interaction, as needed for graphitic and other soft‐matter systems. Indeed full calculations of this type are currently being attempted for graphite, and appear to be very delicate. We discuss recent efforts to approximate these calculations, and propose a new scheme. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005</description><subject>density functional theory</subject><subject>dispersion interaction</subject><subject>graphitic cohesion</subject><subject>soft matter</subject><subject>van der Waals force</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEQQIMouFYPgj-gVw9pJ5k02RxLtVVYlaJFbyFJE1ytrCb1o__e1VVvngZm3ht4hBwyGDAAPnx5tQMOyMQWKRhoRYVkd9ukaG9AlYRyl-zl_AAAEqUqyNF1E9d939yHXL-FfmySD3mf7ES7yuHgZ_bIYnp6Mzmj1dXsfDKuqEeFgvoYSme15jY673kpYCmUjqJE7R2HJVqnpW-3lkcOXIJH56WLTEnrIkTskePur09NzilE85zqJ5s2hoH5yjFtjvnOadlhx77Xq7D5HzTzxfjXoJ1R53X4-DNsejRSoRqZ28uZEScX1XyE2nD8BL9SWhs</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dobson, John F.</creator><creator>Wang, Jun</creator><creator>Dinte, Bradley P.</creator><creator>McLennan, Keith</creator><creator>Le, Hung M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>Soft cohesive forces</title><author>Dobson, John F. ; Wang, Jun ; Dinte, Bradley P. ; McLennan, Keith ; Le, Hung M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-cfe8ba992afbcc2840d479f4839cb20d3ab96c40da2f20260c3bc6bf176abf0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>density functional theory</topic><topic>dispersion interaction</topic><topic>graphitic cohesion</topic><topic>soft matter</topic><topic>van der Waals force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobson, John F.</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Dinte, Bradley P.</creatorcontrib><creatorcontrib>McLennan, Keith</creatorcontrib><creatorcontrib>Le, Hung M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobson, John F.</au><au>Wang, Jun</au><au>Dinte, Bradley P.</au><au>McLennan, Keith</au><au>Le, Hung M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft cohesive forces</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2005</date><risdate>2005</risdate><volume>101</volume><issue>5</issue><spage>579</spage><epage>598</epage><pages>579-598</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>We discuss dispersion forces, beginning with toy models that illustrate the limitations of various standard approaches. For metallic cohesion of very thin layers, we show that because the local density approximation (LDA) misses distant dispersion interactions, it also makes significant errors in the maximum cohesive force, a short‐ranged property. Furthermore, perturbative methods fail for such large planar systems, and CI methods are impractical. For large planar and linear systems in the well‐separated limit we show that insulating and metallic systems can exhibit very different dispersion forces, pairwise summation of atomic R−6 terms failing for the metallic cases. This could have implications for the interaction between nanotubes and between graphene planes: these planes are zero‐gap insulators at large separation and weak metals at graphitic equilibrium. Graphitic cohesion and intercalation are fundamental to a hydrogen economy and to various nanotechnologies, yet our arguments strongly suggest that all standard methods are inadequate for these phenomena. We argue that nonlocal RPA‐like correlation energy formulae contain all the required “seamless” physics of long‐ and short‐ranged interaction, as needed for graphitic and other soft‐matter systems. Indeed full calculations of this type are currently being attempted for graphite, and appear to be very delicate. We discuss recent efforts to approximate these calculations, and propose a new scheme. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.20314</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2005, Vol.101 (5), p.579-598
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_20314
source Wiley Online Library Journals Frontfile Complete
subjects density functional theory
dispersion interaction
graphitic cohesion
soft matter
van der Waals force
title Soft cohesive forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20cohesive%20forces&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Dobson,%20John%20F.&rft.date=2005&rft.volume=101&rft.issue=5&rft.spage=579&rft.epage=598&rft.pages=579-598&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.20314&rft_dat=%3Cwiley_cross%3EQUA20314%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true