Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution
The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution,...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2025-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Quality and reliability engineering international |
container_volume | |
creator | Kumarasamy, Pradeepa Veerakumari Ramesh, Thulasilakshmi Thottathil, Asif T. |
description | The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established. |
doi_str_mv | 10.1002/qre.3719 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qre_3719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_qre_3719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c118t-6c887a26b15918a29bacdec191cde922e83e6b0a38d68fd3ebfbe56ca2ab7bb83</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EEqEg8QgZWVJ8YprYY1tulSqBgM7RsXOCXBGn2CmCre8AT9gnwQUGpl_6b8PH2CnwIXCen796GooS1B5LgCuVQSHkPkt4eSEzyaE8ZEchLDmPZSUT9j42hlY9OkPbzdcDLcn0tnPp1NuevMV0goHqNDoT653GdbvdfD7i2tXkQzq3DfW2pfTSht5bvf7ZLoJ1z-nMxYM3cnF939kQYvC_dcwOGnwJdPKnA7a4vnqa3mbzu5vZdDzPDIDss8JIWWJeaBgpkJgrjaYmAwqiqDwnKajQHIWsC9nUgnSjaVQYzFGXWksxYGe_v8Z3IXhqqpW3LfqPCni1I1ZFYtWOmPgGq5BkrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumarasamy, Pradeepa Veerakumari ; Ramesh, Thulasilakshmi ; Thottathil, Asif T.</creator><creatorcontrib>Kumarasamy, Pradeepa Veerakumari ; Ramesh, Thulasilakshmi ; Thottathil, Asif T.</creatorcontrib><description>The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3719</identifier><language>eng</language><ispartof>Quality and reliability engineering international, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c118t-6c887a26b15918a29bacdec191cde922e83e6b0a38d68fd3ebfbe56ca2ab7bb83</cites><orcidid>0000-0003-2549-3019 ; 0009-0000-7866-4657 ; 0000-0001-6402-3234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumarasamy, Pradeepa Veerakumari</creatorcontrib><creatorcontrib>Ramesh, Thulasilakshmi</creatorcontrib><creatorcontrib>Thottathil, Asif T.</creatorcontrib><title>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</title><title>Quality and reliability engineering international</title><description>The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.</description><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EEqEg8QgZWVJ8YprYY1tulSqBgM7RsXOCXBGn2CmCre8AT9gnwQUGpl_6b8PH2CnwIXCen796GooS1B5LgCuVQSHkPkt4eSEzyaE8ZEchLDmPZSUT9j42hlY9OkPbzdcDLcn0tnPp1NuevMV0goHqNDoT653GdbvdfD7i2tXkQzq3DfW2pfTSht5bvf7ZLoJ1z-nMxYM3cnF939kQYvC_dcwOGnwJdPKnA7a4vnqa3mbzu5vZdDzPDIDss8JIWWJeaBgpkJgrjaYmAwqiqDwnKajQHIWsC9nUgnSjaVQYzFGXWksxYGe_v8Z3IXhqqpW3LfqPCni1I1ZFYtWOmPgGq5BkrA</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Kumarasamy, Pradeepa Veerakumari</creator><creator>Ramesh, Thulasilakshmi</creator><creator>Thottathil, Asif T.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2549-3019</orcidid><orcidid>https://orcid.org/0009-0000-7866-4657</orcidid><orcidid>https://orcid.org/0000-0001-6402-3234</orcidid></search><sort><creationdate>20250103</creationdate><title>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</title><author>Kumarasamy, Pradeepa Veerakumari ; Ramesh, Thulasilakshmi ; Thottathil, Asif T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c118t-6c887a26b15918a29bacdec191cde922e83e6b0a38d68fd3ebfbe56ca2ab7bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumarasamy, Pradeepa Veerakumari</creatorcontrib><creatorcontrib>Ramesh, Thulasilakshmi</creatorcontrib><creatorcontrib>Thottathil, Asif T.</creatorcontrib><collection>CrossRef</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumarasamy, Pradeepa Veerakumari</au><au>Ramesh, Thulasilakshmi</au><au>Thottathil, Asif T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2025-01-03</date><risdate>2025</risdate><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.</abstract><doi>10.1002/qre.3719</doi><orcidid>https://orcid.org/0000-0003-2549-3019</orcidid><orcidid>https://orcid.org/0009-0000-7866-4657</orcidid><orcidid>https://orcid.org/0000-0001-6402-3234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2025-01 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_crossref_primary_10_1002_qre_3719 |
source | Wiley Online Library Journals Frontfile Complete |
title | Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptance%E2%80%94Rejection%20Criteria%20Based%20on%20Birnbaum%E2%80%93Saunders%20Lifetime%20Distribution%20Using%20Intervened%20Poisson%20Distribution&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Kumarasamy,%20Pradeepa%20Veerakumari&rft.date=2025-01-03&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3719&rft_dat=%3Ccrossref%3E10_1002_qre_3719%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |