Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution

The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2025-01
Hauptverfasser: Kumarasamy, Pradeepa Veerakumari, Ramesh, Thulasilakshmi, Thottathil, Asif T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Quality and reliability engineering international
container_volume
creator Kumarasamy, Pradeepa Veerakumari
Ramesh, Thulasilakshmi
Thottathil, Asif T.
description The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.
doi_str_mv 10.1002/qre.3719
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qre_3719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_qre_3719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c118t-6c887a26b15918a29bacdec191cde922e83e6b0a38d68fd3ebfbe56ca2ab7bb83</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EEqEg8QgZWVJ8YprYY1tulSqBgM7RsXOCXBGn2CmCre8AT9gnwQUGpl_6b8PH2CnwIXCen796GooS1B5LgCuVQSHkPkt4eSEzyaE8ZEchLDmPZSUT9j42hlY9OkPbzdcDLcn0tnPp1NuevMV0goHqNDoT653GdbvdfD7i2tXkQzq3DfW2pfTSht5bvf7ZLoJ1z-nMxYM3cnF939kQYvC_dcwOGnwJdPKnA7a4vnqa3mbzu5vZdDzPDIDss8JIWWJeaBgpkJgrjaYmAwqiqDwnKajQHIWsC9nUgnSjaVQYzFGXWksxYGe_v8Z3IXhqqpW3LfqPCni1I1ZFYtWOmPgGq5BkrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kumarasamy, Pradeepa Veerakumari ; Ramesh, Thulasilakshmi ; Thottathil, Asif T.</creator><creatorcontrib>Kumarasamy, Pradeepa Veerakumari ; Ramesh, Thulasilakshmi ; Thottathil, Asif T.</creatorcontrib><description>The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3719</identifier><language>eng</language><ispartof>Quality and reliability engineering international, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c118t-6c887a26b15918a29bacdec191cde922e83e6b0a38d68fd3ebfbe56ca2ab7bb83</cites><orcidid>0000-0003-2549-3019 ; 0009-0000-7866-4657 ; 0000-0001-6402-3234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumarasamy, Pradeepa Veerakumari</creatorcontrib><creatorcontrib>Ramesh, Thulasilakshmi</creatorcontrib><creatorcontrib>Thottathil, Asif T.</creatorcontrib><title>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</title><title>Quality and reliability engineering international</title><description>The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.</description><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EEqEg8QgZWVJ8YprYY1tulSqBgM7RsXOCXBGn2CmCre8AT9gnwQUGpl_6b8PH2CnwIXCen796GooS1B5LgCuVQSHkPkt4eSEzyaE8ZEchLDmPZSUT9j42hlY9OkPbzdcDLcn0tnPp1NuevMV0goHqNDoT653GdbvdfD7i2tXkQzq3DfW2pfTSht5bvf7ZLoJ1z-nMxYM3cnF939kQYvC_dcwOGnwJdPKnA7a4vnqa3mbzu5vZdDzPDIDss8JIWWJeaBgpkJgrjaYmAwqiqDwnKajQHIWsC9nUgnSjaVQYzFGXWksxYGe_v8Z3IXhqqpW3LfqPCni1I1ZFYtWOmPgGq5BkrA</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Kumarasamy, Pradeepa Veerakumari</creator><creator>Ramesh, Thulasilakshmi</creator><creator>Thottathil, Asif T.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2549-3019</orcidid><orcidid>https://orcid.org/0009-0000-7866-4657</orcidid><orcidid>https://orcid.org/0000-0001-6402-3234</orcidid></search><sort><creationdate>20250103</creationdate><title>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</title><author>Kumarasamy, Pradeepa Veerakumari ; Ramesh, Thulasilakshmi ; Thottathil, Asif T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c118t-6c887a26b15918a29bacdec191cde922e83e6b0a38d68fd3ebfbe56ca2ab7bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumarasamy, Pradeepa Veerakumari</creatorcontrib><creatorcontrib>Ramesh, Thulasilakshmi</creatorcontrib><creatorcontrib>Thottathil, Asif T.</creatorcontrib><collection>CrossRef</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumarasamy, Pradeepa Veerakumari</au><au>Ramesh, Thulasilakshmi</au><au>Thottathil, Asif T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2025-01-03</date><risdate>2025</risdate><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>The Birnbaum–Saunders (BS) distribution is used to represent the impact of fatigue on the products produced in a continuous cycle, which is the primary quality characteristic that determines the product's failure time. This article explains the acceptance sampling plan for the BS distribution, which uses percentiles when the life test ends at a certain time, along with the intervened Poisson distribution. More specifically, this article primarily aims to determine the minimum sample size required to confirm the specified life percentile under a specific customer's risk. The operating characteristic values and the producer's risk are established.</abstract><doi>10.1002/qre.3719</doi><orcidid>https://orcid.org/0000-0003-2549-3019</orcidid><orcidid>https://orcid.org/0009-0000-7866-4657</orcidid><orcidid>https://orcid.org/0000-0001-6402-3234</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2025-01
issn 0748-8017
1099-1638
language eng
recordid cdi_crossref_primary_10_1002_qre_3719
source Wiley Online Library Journals Frontfile Complete
title Acceptance—Rejection Criteria Based on Birnbaum–Saunders Lifetime Distribution Using Intervened Poisson Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptance%E2%80%94Rejection%20Criteria%20Based%20on%20Birnbaum%E2%80%93Saunders%20Lifetime%20Distribution%20Using%20Intervened%20Poisson%20Distribution&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Kumarasamy,%20Pradeepa%20Veerakumari&rft.date=2025-01-03&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3719&rft_dat=%3Ccrossref%3E10_1002_qre_3719%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true