Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm

This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2024-12
Hauptverfasser: Zhao, Tianxiang, Sun, Li, Zhou, Yilai, Kang, Zhuang, Li, He, Kang, Jichuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Quality and reliability engineering international
container_volume
creator Zhao, Tianxiang
Sun, Li
Zhou, Yilai
Kang, Zhuang
Li, He
Kang, Jichuan
description This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.
doi_str_mv 10.1002/qre.3706
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qre_3706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_qre_3706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691-3b74e9562bd83372f5d9524ae1a7b814b9da56c3d4b7738af2e6b4521299c21e3</originalsourceid><addsrcrecordid>eNotkLtOwzAYRi0EEqEg8QgeWVJ8S2yPbaAUKW2HBjFGTvynDcoF7DBk4xF4Rp6EVDB9Zzj6hoPQLSVzSgi7_3Aw55LEZyigROuQxlydo4BIoUJFqLxEV96_ETLJWgXoZVdV_tg7wK91Z3--vtejdf0BOrwf_QCtxyvz2Qz4AQYoh7rv8NJ4sHiCZLud_GWd7rPNBIsNXjSH3tXDsb1GF5VpPNz87wxlq8csWYfp7uk5WaRhGWsa8kIK0FHMCqs4l6yKrI6YMECNLBQVhbYmiktuRSElV6ZiEBciYpRpXTIKfIbu_m5L13vvoMrfXd0aN-aU5Kca-VQjP9Xgv3xKVE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</title><source>Wiley Online Library All Journals</source><creator>Zhao, Tianxiang ; Sun, Li ; Zhou, Yilai ; Kang, Zhuang ; Li, He ; Kang, Jichuan</creator><creatorcontrib>Zhao, Tianxiang ; Sun, Li ; Zhou, Yilai ; Kang, Zhuang ; Li, He ; Kang, Jichuan</creatorcontrib><description>This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3706</identifier><language>eng</language><ispartof>Quality and reliability engineering international, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c691-3b74e9562bd83372f5d9524ae1a7b814b9da56c3d4b7738af2e6b4521299c21e3</cites><orcidid>0000-0001-6429-9097 ; 0000-0002-8975-5025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhao, Tianxiang</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Yilai</creatorcontrib><creatorcontrib>Kang, Zhuang</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Kang, Jichuan</creatorcontrib><title>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</title><title>Quality and reliability engineering international</title><description>This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.</description><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYRi0EEqEg8QgeWVJ8S2yPbaAUKW2HBjFGTvynDcoF7DBk4xF4Rp6EVDB9Zzj6hoPQLSVzSgi7_3Aw55LEZyigROuQxlydo4BIoUJFqLxEV96_ETLJWgXoZVdV_tg7wK91Z3--vtejdf0BOrwf_QCtxyvz2Qz4AQYoh7rv8NJ4sHiCZLud_GWd7rPNBIsNXjSH3tXDsb1GF5VpPNz87wxlq8csWYfp7uk5WaRhGWsa8kIK0FHMCqs4l6yKrI6YMECNLBQVhbYmiktuRSElV6ZiEBciYpRpXTIKfIbu_m5L13vvoMrfXd0aN-aU5Kca-VQjP9Xgv3xKVE0</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Zhao, Tianxiang</creator><creator>Sun, Li</creator><creator>Zhou, Yilai</creator><creator>Kang, Zhuang</creator><creator>Li, He</creator><creator>Kang, Jichuan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6429-9097</orcidid><orcidid>https://orcid.org/0000-0002-8975-5025</orcidid></search><sort><creationdate>20241216</creationdate><title>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</title><author>Zhao, Tianxiang ; Sun, Li ; Zhou, Yilai ; Kang, Zhuang ; Li, He ; Kang, Jichuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691-3b74e9562bd83372f5d9524ae1a7b814b9da56c3d4b7738af2e6b4521299c21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianxiang</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Yilai</creatorcontrib><creatorcontrib>Kang, Zhuang</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Kang, Jichuan</creatorcontrib><collection>CrossRef</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianxiang</au><au>Sun, Li</au><au>Zhou, Yilai</au><au>Kang, Zhuang</au><au>Li, He</au><au>Kang, Jichuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-12-16</date><risdate>2024</risdate><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.</abstract><doi>10.1002/qre.3706</doi><orcidid>https://orcid.org/0000-0001-6429-9097</orcidid><orcidid>https://orcid.org/0000-0002-8975-5025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2024-12
issn 0748-8017
1099-1638
language eng
recordid cdi_crossref_primary_10_1002_qre_3706
source Wiley Online Library All Journals
title Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offshore%20Wind%E2%80%90Hydrogen%20Systems%20Fault%20Detection%20Based%20on%20CNN%E2%80%90BiLSTM%E2%80%90AM%20Algorithm&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Zhao,%20Tianxiang&rft.date=2024-12-16&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3706&rft_dat=%3Ccrossref%3E10_1002_qre_3706%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true