Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm
This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trai...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2024-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Quality and reliability engineering international |
container_volume | |
creator | Zhao, Tianxiang Sun, Li Zhou, Yilai Kang, Zhuang Li, He Kang, Jichuan |
description | This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison. |
doi_str_mv | 10.1002/qre.3706 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qre_3706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_qre_3706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691-3b74e9562bd83372f5d9524ae1a7b814b9da56c3d4b7738af2e6b4521299c21e3</originalsourceid><addsrcrecordid>eNotkLtOwzAYRi0EEqEg8QgeWVJ8S2yPbaAUKW2HBjFGTvynDcoF7DBk4xF4Rp6EVDB9Zzj6hoPQLSVzSgi7_3Aw55LEZyigROuQxlydo4BIoUJFqLxEV96_ETLJWgXoZVdV_tg7wK91Z3--vtejdf0BOrwf_QCtxyvz2Qz4AQYoh7rv8NJ4sHiCZLud_GWd7rPNBIsNXjSH3tXDsb1GF5VpPNz87wxlq8csWYfp7uk5WaRhGWsa8kIK0FHMCqs4l6yKrI6YMECNLBQVhbYmiktuRSElV6ZiEBciYpRpXTIKfIbu_m5L13vvoMrfXd0aN-aU5Kca-VQjP9Xgv3xKVE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</title><source>Wiley Online Library All Journals</source><creator>Zhao, Tianxiang ; Sun, Li ; Zhou, Yilai ; Kang, Zhuang ; Li, He ; Kang, Jichuan</creator><creatorcontrib>Zhao, Tianxiang ; Sun, Li ; Zhou, Yilai ; Kang, Zhuang ; Li, He ; Kang, Jichuan</creatorcontrib><description>This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3706</identifier><language>eng</language><ispartof>Quality and reliability engineering international, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c691-3b74e9562bd83372f5d9524ae1a7b814b9da56c3d4b7738af2e6b4521299c21e3</cites><orcidid>0000-0001-6429-9097 ; 0000-0002-8975-5025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhao, Tianxiang</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Yilai</creatorcontrib><creatorcontrib>Kang, Zhuang</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Kang, Jichuan</creatorcontrib><title>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</title><title>Quality and reliability engineering international</title><description>This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.</description><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYRi0EEqEg8QgeWVJ8S2yPbaAUKW2HBjFGTvynDcoF7DBk4xF4Rp6EVDB9Zzj6hoPQLSVzSgi7_3Aw55LEZyigROuQxlydo4BIoUJFqLxEV96_ETLJWgXoZVdV_tg7wK91Z3--vtejdf0BOrwf_QCtxyvz2Qz4AQYoh7rv8NJ4sHiCZLud_GWd7rPNBIsNXjSH3tXDsb1GF5VpPNz87wxlq8csWYfp7uk5WaRhGWsa8kIK0FHMCqs4l6yKrI6YMECNLBQVhbYmiktuRSElV6ZiEBciYpRpXTIKfIbu_m5L13vvoMrfXd0aN-aU5Kca-VQjP9Xgv3xKVE0</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Zhao, Tianxiang</creator><creator>Sun, Li</creator><creator>Zhou, Yilai</creator><creator>Kang, Zhuang</creator><creator>Li, He</creator><creator>Kang, Jichuan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6429-9097</orcidid><orcidid>https://orcid.org/0000-0002-8975-5025</orcidid></search><sort><creationdate>20241216</creationdate><title>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</title><author>Zhao, Tianxiang ; Sun, Li ; Zhou, Yilai ; Kang, Zhuang ; Li, He ; Kang, Jichuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691-3b74e9562bd83372f5d9524ae1a7b814b9da56c3d4b7738af2e6b4521299c21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianxiang</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Zhou, Yilai</creatorcontrib><creatorcontrib>Kang, Zhuang</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Kang, Jichuan</creatorcontrib><collection>CrossRef</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianxiang</au><au>Sun, Li</au><au>Zhou, Yilai</au><au>Kang, Zhuang</au><au>Li, He</au><au>Kang, Jichuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-12-16</date><risdate>2024</risdate><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.</abstract><doi>10.1002/qre.3706</doi><orcidid>https://orcid.org/0000-0001-6429-9097</orcidid><orcidid>https://orcid.org/0000-0002-8975-5025</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2024-12 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_crossref_primary_10_1002_qre_3706 |
source | Wiley Online Library All Journals |
title | Offshore Wind‐Hydrogen Systems Fault Detection Based on CNN‐BiLSTM‐AM Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offshore%20Wind%E2%80%90Hydrogen%20Systems%20Fault%20Detection%20Based%20on%20CNN%E2%80%90BiLSTM%E2%80%90AM%20Algorithm&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Zhao,%20Tianxiang&rft.date=2024-12-16&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3706&rft_dat=%3Ccrossref%3E10_1002_qre_3706%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |