Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells
We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapo...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2012-07, Vol.6 (7), p.297-299 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 7 |
container_start_page | 297 |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 6 |
creator | Klugius, Ines Miller, Rebekah Quintilla, Aina Friedlmeier, Theresa M. Blázquez‐Sánchez, David Ahlswede, Erik Powalla, Michael |
description | We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se)
2
(CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S
2
precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se)
2
layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se
2
phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssr.201206191 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssr_201206191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssr_201206191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOKdXzzlusNb8bnaUonUw8FA9lzRNaCVtRtIh--_NUIan932Px5fHB4BHjHKMEHk6xBhygjBBAm_xFVhgKUgmSIGuLzdnt-Auxi-E-LZgdAGGKvjvuYej0b2ahjhCb-HcmzAq507wELw2MZoOlsfVbtpUal1DkmKjjyH6EKH1Idlhmv93VvWmNutUjN6pALVxLt6DG6tcNA9_ugSfry8f5Vu2f6925fM-05izOWtp2lVIXnCKZMekNswqyrGwrWy55YbRrS5a2llBMeFWWmUJkbKlTFDVGboE-e9fHXwiYmyT5o0qnBqMmjOo5gyquYCiP9QtW0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</title><source>Access via Wiley Online Library</source><creator>Klugius, Ines ; Miller, Rebekah ; Quintilla, Aina ; Friedlmeier, Theresa M. ; Blázquez‐Sánchez, David ; Ahlswede, Erik ; Powalla, Michael</creator><creatorcontrib>Klugius, Ines ; Miller, Rebekah ; Quintilla, Aina ; Friedlmeier, Theresa M. ; Blázquez‐Sánchez, David ; Ahlswede, Erik ; Powalla, Michael</creatorcontrib><description>We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se)
2
(CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S
2
precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se)
2
layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se
2
phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201206191</identifier><language>eng</language><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2012-07, Vol.6 (7), p.297-299</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</citedby><cites>FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Klugius, Ines</creatorcontrib><creatorcontrib>Miller, Rebekah</creatorcontrib><creatorcontrib>Quintilla, Aina</creatorcontrib><creatorcontrib>Friedlmeier, Theresa M.</creatorcontrib><creatorcontrib>Blázquez‐Sánchez, David</creatorcontrib><creatorcontrib>Ahlswede, Erik</creatorcontrib><creatorcontrib>Powalla, Michael</creatorcontrib><title>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se)
2
(CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S
2
precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se)
2
layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se
2
phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOKdXzzlusNb8bnaUonUw8FA9lzRNaCVtRtIh--_NUIan932Px5fHB4BHjHKMEHk6xBhygjBBAm_xFVhgKUgmSIGuLzdnt-Auxi-E-LZgdAGGKvjvuYej0b2ahjhCb-HcmzAq507wELw2MZoOlsfVbtpUal1DkmKjjyH6EKH1Idlhmv93VvWmNutUjN6pALVxLt6DG6tcNA9_ugSfry8f5Vu2f6925fM-05izOWtp2lVIXnCKZMekNswqyrGwrWy55YbRrS5a2llBMeFWWmUJkbKlTFDVGboE-e9fHXwiYmyT5o0qnBqMmjOo5gyquYCiP9QtW0c</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Klugius, Ines</creator><creator>Miller, Rebekah</creator><creator>Quintilla, Aina</creator><creator>Friedlmeier, Theresa M.</creator><creator>Blázquez‐Sánchez, David</creator><creator>Ahlswede, Erik</creator><creator>Powalla, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201207</creationdate><title>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</title><author>Klugius, Ines ; Miller, Rebekah ; Quintilla, Aina ; Friedlmeier, Theresa M. ; Blázquez‐Sánchez, David ; Ahlswede, Erik ; Powalla, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klugius, Ines</creatorcontrib><creatorcontrib>Miller, Rebekah</creatorcontrib><creatorcontrib>Quintilla, Aina</creatorcontrib><creatorcontrib>Friedlmeier, Theresa M.</creatorcontrib><creatorcontrib>Blázquez‐Sánchez, David</creatorcontrib><creatorcontrib>Ahlswede, Erik</creatorcontrib><creatorcontrib>Powalla, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klugius, Ines</au><au>Miller, Rebekah</au><au>Quintilla, Aina</au><au>Friedlmeier, Theresa M.</au><au>Blázquez‐Sánchez, David</au><au>Ahlswede, Erik</au><au>Powalla, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2012-07</date><risdate>2012</risdate><volume>6</volume><issue>7</issue><spage>297</spage><epage>299</epage><pages>297-299</pages><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se)
2
(CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S
2
precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se)
2
layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se
2
phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><doi>10.1002/pssr.201206191</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2012-07, Vol.6 (7), p.297-299 |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssr_201206191 |
source | Access via Wiley Online Library |
title | Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20mechanism%20of%20thermally%20processed%20Cu(In,Ga)S%202%20precursors%20for%20printed%20Cu(In,Ga)(S,Se)%202%20solar%20cells&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Klugius,%20Ines&rft.date=2012-07&rft.volume=6&rft.issue=7&rft.spage=297&rft.epage=299&rft.pages=297-299&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201206191&rft_dat=%3Ccrossref%3E10_1002_pssr_201206191%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |