Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells

We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2012-07, Vol.6 (7), p.297-299
Hauptverfasser: Klugius, Ines, Miller, Rebekah, Quintilla, Aina, Friedlmeier, Theresa M., Blázquez‐Sánchez, David, Ahlswede, Erik, Powalla, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 7
container_start_page 297
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 6
creator Klugius, Ines
Miller, Rebekah
Quintilla, Aina
Friedlmeier, Theresa M.
Blázquez‐Sánchez, David
Ahlswede, Erik
Powalla, Michael
description We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S 2 precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se) 2 layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se 2 phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssr.201206191
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssr_201206191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssr_201206191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOKdXzzlusNb8bnaUonUw8FA9lzRNaCVtRtIh--_NUIan932Px5fHB4BHjHKMEHk6xBhygjBBAm_xFVhgKUgmSIGuLzdnt-Auxi-E-LZgdAGGKvjvuYej0b2ahjhCb-HcmzAq507wELw2MZoOlsfVbtpUal1DkmKjjyH6EKH1Idlhmv93VvWmNutUjN6pALVxLt6DG6tcNA9_ugSfry8f5Vu2f6925fM-05izOWtp2lVIXnCKZMekNswqyrGwrWy55YbRrS5a2llBMeFWWmUJkbKlTFDVGboE-e9fHXwiYmyT5o0qnBqMmjOo5gyquYCiP9QtW0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</title><source>Access via Wiley Online Library</source><creator>Klugius, Ines ; Miller, Rebekah ; Quintilla, Aina ; Friedlmeier, Theresa M. ; Blázquez‐Sánchez, David ; Ahlswede, Erik ; Powalla, Michael</creator><creatorcontrib>Klugius, Ines ; Miller, Rebekah ; Quintilla, Aina ; Friedlmeier, Theresa M. ; Blázquez‐Sánchez, David ; Ahlswede, Erik ; Powalla, Michael</creatorcontrib><description>We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S 2 precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se) 2 layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se 2 phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201206191</identifier><language>eng</language><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2012-07, Vol.6 (7), p.297-299</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</citedby><cites>FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Klugius, Ines</creatorcontrib><creatorcontrib>Miller, Rebekah</creatorcontrib><creatorcontrib>Quintilla, Aina</creatorcontrib><creatorcontrib>Friedlmeier, Theresa M.</creatorcontrib><creatorcontrib>Blázquez‐Sánchez, David</creatorcontrib><creatorcontrib>Ahlswede, Erik</creatorcontrib><creatorcontrib>Powalla, Michael</creatorcontrib><title>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S 2 precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se) 2 layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se 2 phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOKdXzzlusNb8bnaUonUw8FA9lzRNaCVtRtIh--_NUIan932Px5fHB4BHjHKMEHk6xBhygjBBAm_xFVhgKUgmSIGuLzdnt-Auxi-E-LZgdAGGKvjvuYej0b2ahjhCb-HcmzAq507wELw2MZoOlsfVbtpUal1DkmKjjyH6EKH1Idlhmv93VvWmNutUjN6pALVxLt6DG6tcNA9_ugSfry8f5Vu2f6925fM-05izOWtp2lVIXnCKZMekNswqyrGwrWy55YbRrS5a2llBMeFWWmUJkbKlTFDVGboE-e9fHXwiYmyT5o0qnBqMmjOo5gyquYCiP9QtW0c</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Klugius, Ines</creator><creator>Miller, Rebekah</creator><creator>Quintilla, Aina</creator><creator>Friedlmeier, Theresa M.</creator><creator>Blázquez‐Sánchez, David</creator><creator>Ahlswede, Erik</creator><creator>Powalla, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201207</creationdate><title>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</title><author>Klugius, Ines ; Miller, Rebekah ; Quintilla, Aina ; Friedlmeier, Theresa M. ; Blázquez‐Sánchez, David ; Ahlswede, Erik ; Powalla, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-b374378575308d48ce4fa3516fb8b5f5e439c7b3df63125f8faf2288b3463ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klugius, Ines</creatorcontrib><creatorcontrib>Miller, Rebekah</creatorcontrib><creatorcontrib>Quintilla, Aina</creatorcontrib><creatorcontrib>Friedlmeier, Theresa M.</creatorcontrib><creatorcontrib>Blázquez‐Sánchez, David</creatorcontrib><creatorcontrib>Ahlswede, Erik</creatorcontrib><creatorcontrib>Powalla, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klugius, Ines</au><au>Miller, Rebekah</au><au>Quintilla, Aina</au><au>Friedlmeier, Theresa M.</au><au>Blázquez‐Sánchez, David</au><au>Ahlswede, Erik</au><au>Powalla, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2012-07</date><risdate>2012</risdate><volume>6</volume><issue>7</issue><spage>297</spage><epage>299</epage><pages>297-299</pages><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se) 2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S 2 precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se) 2 layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se 2 phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><doi>10.1002/pssr.201206191</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2012-07, Vol.6 (7), p.297-299
issn 1862-6254
1862-6270
language eng
recordid cdi_crossref_primary_10_1002_pssr_201206191
source Access via Wiley Online Library
title Growth mechanism of thermally processed Cu(In,Ga)S 2 precursors for printed Cu(In,Ga)(S,Se) 2 solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20mechanism%20of%20thermally%20processed%20Cu(In,Ga)S%202%20precursors%20for%20printed%20Cu(In,Ga)(S,Se)%202%20solar%20cells&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Klugius,%20Ines&rft.date=2012-07&rft.volume=6&rft.issue=7&rft.spage=297&rft.epage=299&rft.pages=297-299&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201206191&rft_dat=%3Ccrossref%3E10_1002_pssr_201206191%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true