Modeling the Influence of Deposition Parameters on the Crystalline Degree in the Simulation of Polycrystalline Silicon

Polycrystalline silicon (poly‐Si) has been and still is a pivotal material, particularly in the electronics and solar energy industries. Controlling crystallization is one of the challenges, e.g., in producing poly‐Si films for radio frequency applications. Since film growth by deposition is a rando...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2024-12
Hauptverfasser: Santonen, Mikael, Lahti, Antti, Srivastava, Divya, Jahanshah Rad, Zahra, Miettinen, Mikko, Ebrahimzadeh, Masoud, Laaksonen, Johanna, Laukkanen, Pekka, Punkkinen, Marko, Kokko, Kalevi, Kuronen, Antti, Parkkinen, Katja, Eklund, Markus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title physica status solidi (b)
container_volume
creator Santonen, Mikael
Lahti, Antti
Srivastava, Divya
Jahanshah Rad, Zahra
Miettinen, Mikko
Ebrahimzadeh, Masoud
Laaksonen, Johanna
Laukkanen, Pekka
Punkkinen, Marko
Kokko, Kalevi
Kuronen, Antti
Parkkinen, Katja
Eklund, Markus
description Polycrystalline silicon (poly‐Si) has been and still is a pivotal material, particularly in the electronics and solar energy industries. Controlling crystallization is one of the challenges, e.g., in producing poly‐Si films for radio frequency applications. Since film growth by deposition is a random process, producing a specific grain size distribution for poly‐Si is challenging. By combining molecular dynamics simulation data with surface diffusion physics, novel transparent models are constructed that shed light on the physics behind the deposition of poly‐Si thin films and assist the selection of simulation parameters. Both probabilistic and geometric approaches are used to find relevant simulation parameters and their bounds to describe the complex grain–grain boundary interactions in the growth of poly‐Si thin films. Poly‐Si growth simulations provide valuable information to better understand the features of optimal growth conditions. The constructed parameterized deposition model is fitted to the simulation data. In addition to further refining the simulation of customized poly‐Si films, the presented modeling concept can also be used more generally in the analysis of physical vapor deposition.
doi_str_mv 10.1002/pssb.202400483
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202400483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssb_202400483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-a94ebb1218035bc979822d178f0ffcdc5a0862a57237aac1f1c824702be72e773</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqWwZe0fSJmxkzpZovJopSIqFdaR44yLkRtXdorUvyelCLEaXc25d3EYu0WYIIC426XUTASIHCAv5RkbYSEwk1WB52wEUkGGlRKX7CqlTwBQKHHEvl5CS951G95_EF901u-pM8SD5Q-0C8n1LnR8paPeUk8x8SEdyVk8pF77oUkDuIlE3J0-a7fde_1TG0ZWwR_MP3btvDOhu2YXVvtEN793zN6fHt9m82z5-ryY3S8zg9O8z3SVU9OgwBJk0ZhKVaUQLarSgrWmNYWGcip0oYRUWhu0aEqRKxANKUFKyTGbnHZNDClFsvUuuq2OhxqhPlqrj9bqP2vyG0P7YqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling the Influence of Deposition Parameters on the Crystalline Degree in the Simulation of Polycrystalline Silicon</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Santonen, Mikael ; Lahti, Antti ; Srivastava, Divya ; Jahanshah Rad, Zahra ; Miettinen, Mikko ; Ebrahimzadeh, Masoud ; Laaksonen, Johanna ; Laukkanen, Pekka ; Punkkinen, Marko ; Kokko, Kalevi ; Kuronen, Antti ; Parkkinen, Katja ; Eklund, Markus</creator><creatorcontrib>Santonen, Mikael ; Lahti, Antti ; Srivastava, Divya ; Jahanshah Rad, Zahra ; Miettinen, Mikko ; Ebrahimzadeh, Masoud ; Laaksonen, Johanna ; Laukkanen, Pekka ; Punkkinen, Marko ; Kokko, Kalevi ; Kuronen, Antti ; Parkkinen, Katja ; Eklund, Markus</creatorcontrib><description>Polycrystalline silicon (poly‐Si) has been and still is a pivotal material, particularly in the electronics and solar energy industries. Controlling crystallization is one of the challenges, e.g., in producing poly‐Si films for radio frequency applications. Since film growth by deposition is a random process, producing a specific grain size distribution for poly‐Si is challenging. By combining molecular dynamics simulation data with surface diffusion physics, novel transparent models are constructed that shed light on the physics behind the deposition of poly‐Si thin films and assist the selection of simulation parameters. Both probabilistic and geometric approaches are used to find relevant simulation parameters and their bounds to describe the complex grain–grain boundary interactions in the growth of poly‐Si thin films. Poly‐Si growth simulations provide valuable information to better understand the features of optimal growth conditions. The constructed parameterized deposition model is fitted to the simulation data. In addition to further refining the simulation of customized poly‐Si films, the presented modeling concept can also be used more generally in the analysis of physical vapor deposition.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202400483</identifier><language>eng</language><ispartof>physica status solidi (b), 2024-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-a94ebb1218035bc979822d178f0ffcdc5a0862a57237aac1f1c824702be72e773</cites><orcidid>0000-0002-4039-2745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Santonen, Mikael</creatorcontrib><creatorcontrib>Lahti, Antti</creatorcontrib><creatorcontrib>Srivastava, Divya</creatorcontrib><creatorcontrib>Jahanshah Rad, Zahra</creatorcontrib><creatorcontrib>Miettinen, Mikko</creatorcontrib><creatorcontrib>Ebrahimzadeh, Masoud</creatorcontrib><creatorcontrib>Laaksonen, Johanna</creatorcontrib><creatorcontrib>Laukkanen, Pekka</creatorcontrib><creatorcontrib>Punkkinen, Marko</creatorcontrib><creatorcontrib>Kokko, Kalevi</creatorcontrib><creatorcontrib>Kuronen, Antti</creatorcontrib><creatorcontrib>Parkkinen, Katja</creatorcontrib><creatorcontrib>Eklund, Markus</creatorcontrib><title>Modeling the Influence of Deposition Parameters on the Crystalline Degree in the Simulation of Polycrystalline Silicon</title><title>physica status solidi (b)</title><description>Polycrystalline silicon (poly‐Si) has been and still is a pivotal material, particularly in the electronics and solar energy industries. Controlling crystallization is one of the challenges, e.g., in producing poly‐Si films for radio frequency applications. Since film growth by deposition is a random process, producing a specific grain size distribution for poly‐Si is challenging. By combining molecular dynamics simulation data with surface diffusion physics, novel transparent models are constructed that shed light on the physics behind the deposition of poly‐Si thin films and assist the selection of simulation parameters. Both probabilistic and geometric approaches are used to find relevant simulation parameters and their bounds to describe the complex grain–grain boundary interactions in the growth of poly‐Si thin films. Poly‐Si growth simulations provide valuable information to better understand the features of optimal growth conditions. The constructed parameterized deposition model is fitted to the simulation data. In addition to further refining the simulation of customized poly‐Si films, the presented modeling concept can also be used more generally in the analysis of physical vapor deposition.</description><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqWwZe0fSJmxkzpZovJopSIqFdaR44yLkRtXdorUvyelCLEaXc25d3EYu0WYIIC426XUTASIHCAv5RkbYSEwk1WB52wEUkGGlRKX7CqlTwBQKHHEvl5CS951G95_EF901u-pM8SD5Q-0C8n1LnR8paPeUk8x8SEdyVk8pF77oUkDuIlE3J0-a7fde_1TG0ZWwR_MP3btvDOhu2YXVvtEN793zN6fHt9m82z5-ryY3S8zg9O8z3SVU9OgwBJk0ZhKVaUQLarSgrWmNYWGcip0oYRUWhu0aEqRKxANKUFKyTGbnHZNDClFsvUuuq2OhxqhPlqrj9bqP2vyG0P7YqU</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Santonen, Mikael</creator><creator>Lahti, Antti</creator><creator>Srivastava, Divya</creator><creator>Jahanshah Rad, Zahra</creator><creator>Miettinen, Mikko</creator><creator>Ebrahimzadeh, Masoud</creator><creator>Laaksonen, Johanna</creator><creator>Laukkanen, Pekka</creator><creator>Punkkinen, Marko</creator><creator>Kokko, Kalevi</creator><creator>Kuronen, Antti</creator><creator>Parkkinen, Katja</creator><creator>Eklund, Markus</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4039-2745</orcidid></search><sort><creationdate>20241218</creationdate><title>Modeling the Influence of Deposition Parameters on the Crystalline Degree in the Simulation of Polycrystalline Silicon</title><author>Santonen, Mikael ; Lahti, Antti ; Srivastava, Divya ; Jahanshah Rad, Zahra ; Miettinen, Mikko ; Ebrahimzadeh, Masoud ; Laaksonen, Johanna ; Laukkanen, Pekka ; Punkkinen, Marko ; Kokko, Kalevi ; Kuronen, Antti ; Parkkinen, Katja ; Eklund, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-a94ebb1218035bc979822d178f0ffcdc5a0862a57237aac1f1c824702be72e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santonen, Mikael</creatorcontrib><creatorcontrib>Lahti, Antti</creatorcontrib><creatorcontrib>Srivastava, Divya</creatorcontrib><creatorcontrib>Jahanshah Rad, Zahra</creatorcontrib><creatorcontrib>Miettinen, Mikko</creatorcontrib><creatorcontrib>Ebrahimzadeh, Masoud</creatorcontrib><creatorcontrib>Laaksonen, Johanna</creatorcontrib><creatorcontrib>Laukkanen, Pekka</creatorcontrib><creatorcontrib>Punkkinen, Marko</creatorcontrib><creatorcontrib>Kokko, Kalevi</creatorcontrib><creatorcontrib>Kuronen, Antti</creatorcontrib><creatorcontrib>Parkkinen, Katja</creatorcontrib><creatorcontrib>Eklund, Markus</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santonen, Mikael</au><au>Lahti, Antti</au><au>Srivastava, Divya</au><au>Jahanshah Rad, Zahra</au><au>Miettinen, Mikko</au><au>Ebrahimzadeh, Masoud</au><au>Laaksonen, Johanna</au><au>Laukkanen, Pekka</au><au>Punkkinen, Marko</au><au>Kokko, Kalevi</au><au>Kuronen, Antti</au><au>Parkkinen, Katja</au><au>Eklund, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Influence of Deposition Parameters on the Crystalline Degree in the Simulation of Polycrystalline Silicon</atitle><jtitle>physica status solidi (b)</jtitle><date>2024-12-18</date><risdate>2024</risdate><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Polycrystalline silicon (poly‐Si) has been and still is a pivotal material, particularly in the electronics and solar energy industries. Controlling crystallization is one of the challenges, e.g., in producing poly‐Si films for radio frequency applications. Since film growth by deposition is a random process, producing a specific grain size distribution for poly‐Si is challenging. By combining molecular dynamics simulation data with surface diffusion physics, novel transparent models are constructed that shed light on the physics behind the deposition of poly‐Si thin films and assist the selection of simulation parameters. Both probabilistic and geometric approaches are used to find relevant simulation parameters and their bounds to describe the complex grain–grain boundary interactions in the growth of poly‐Si thin films. Poly‐Si growth simulations provide valuable information to better understand the features of optimal growth conditions. The constructed parameterized deposition model is fitted to the simulation data. In addition to further refining the simulation of customized poly‐Si films, the presented modeling concept can also be used more generally in the analysis of physical vapor deposition.</abstract><doi>10.1002/pssb.202400483</doi><orcidid>https://orcid.org/0000-0002-4039-2745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2024-12
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_202400483
source Wiley Online Library Journals Frontfile Complete
title Modeling the Influence of Deposition Parameters on the Crystalline Degree in the Simulation of Polycrystalline Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Influence%20of%20Deposition%20Parameters%20on%20the%20Crystalline%20Degree%20in%20the%20Simulation%20of%20Polycrystalline%20Silicon&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Santonen,%20Mikael&rft.date=2024-12-18&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202400483&rft_dat=%3Ccrossref%3E10_1002_pssb_202400483%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true