Origin of Black Color in Heavily Doped n‐Type GaN Crystal

In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2024-11, Vol.261 (11), p.n/a
Hauptverfasser: Sumi, Tomoaki, Takino, Junichi, Okayama, Yoshio, Usami, Shigeyoshi, Imanishi, Masayuki, Yoshimura, Masashi, Mori, Yusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title physica status solidi (b)
container_volume 261
creator Sumi, Tomoaki
Takino, Junichi
Okayama, Yoshio
Usami, Shigeyoshi
Imanishi, Masayuki
Yoshimura, Masashi
Mori, Yusuke
description In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power. Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.
doi_str_mv 10.1002/pssb.202400027
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202400027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202400027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-e8f7ef6ffa5e578546222f861651772b62f324197efb7ce5e1bdf2ba85cf4a963</originalsourceid><addsrcrecordid>eNqFj8FKw0AQhhdRMFavnvcFUncn2WyCJxttKxQrtJ6XTToj0bUJu6Lk5iP4jD6JKRU9ehr-4f-G-Rg7l2IshYCLLoRqDAJSMSR9wCKpQMZJoeQhi0SiRSwLDcfsJISnoaJlIiN2ufTNY7PlLfGJs_UzL1vXej5s5mjfGtfz67bDDd9-fXyu-w75zN7x0vfh1bpTdkTWBTz7mSP2ML1Zl_N4sZzdlleLuAYNOsacNFJGZBUqnas0AwDKM5kpqTVUGVAC6fAbUqVrVCirDUFlc1VTaossGbHx_m7t2xA8kul882J9b6QwO3WzUze_6gNQ7IH3xmH_T9vcr1aTP_YbOatdSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sumi, Tomoaki ; Takino, Junichi ; Okayama, Yoshio ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</creator><creatorcontrib>Sumi, Tomoaki ; Takino, Junichi ; Okayama, Yoshio ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</creatorcontrib><description>In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power. Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202400027</identifier><language>eng</language><subject>crystal colors ; dopings ; impurities ; nitride semiconductors ; point defects</subject><ispartof>physica status solidi (b), 2024-11, Vol.261 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-e8f7ef6ffa5e578546222f861651772b62f324197efb7ce5e1bdf2ba85cf4a963</cites><orcidid>0009-0000-4117-4769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.202400027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.202400027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Sumi, Tomoaki</creatorcontrib><creatorcontrib>Takino, Junichi</creatorcontrib><creatorcontrib>Okayama, Yoshio</creatorcontrib><creatorcontrib>Usami, Shigeyoshi</creatorcontrib><creatorcontrib>Imanishi, Masayuki</creatorcontrib><creatorcontrib>Yoshimura, Masashi</creatorcontrib><creatorcontrib>Mori, Yusuke</creatorcontrib><title>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</title><title>physica status solidi (b)</title><description>In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power. Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.</description><subject>crystal colors</subject><subject>dopings</subject><subject>impurities</subject><subject>nitride semiconductors</subject><subject>point defects</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj8FKw0AQhhdRMFavnvcFUncn2WyCJxttKxQrtJ6XTToj0bUJu6Lk5iP4jD6JKRU9ehr-4f-G-Rg7l2IshYCLLoRqDAJSMSR9wCKpQMZJoeQhi0SiRSwLDcfsJISnoaJlIiN2ufTNY7PlLfGJs_UzL1vXej5s5mjfGtfz67bDDd9-fXyu-w75zN7x0vfh1bpTdkTWBTz7mSP2ML1Zl_N4sZzdlleLuAYNOsacNFJGZBUqnas0AwDKM5kpqTVUGVAC6fAbUqVrVCirDUFlc1VTaossGbHx_m7t2xA8kul882J9b6QwO3WzUze_6gNQ7IH3xmH_T9vcr1aTP_YbOatdSg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Sumi, Tomoaki</creator><creator>Takino, Junichi</creator><creator>Okayama, Yoshio</creator><creator>Usami, Shigeyoshi</creator><creator>Imanishi, Masayuki</creator><creator>Yoshimura, Masashi</creator><creator>Mori, Yusuke</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-4117-4769</orcidid></search><sort><creationdate>202411</creationdate><title>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</title><author>Sumi, Tomoaki ; Takino, Junichi ; Okayama, Yoshio ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-e8f7ef6ffa5e578546222f861651772b62f324197efb7ce5e1bdf2ba85cf4a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>crystal colors</topic><topic>dopings</topic><topic>impurities</topic><topic>nitride semiconductors</topic><topic>point defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumi, Tomoaki</creatorcontrib><creatorcontrib>Takino, Junichi</creatorcontrib><creatorcontrib>Okayama, Yoshio</creatorcontrib><creatorcontrib>Usami, Shigeyoshi</creatorcontrib><creatorcontrib>Imanishi, Masayuki</creatorcontrib><creatorcontrib>Yoshimura, Masashi</creatorcontrib><creatorcontrib>Mori, Yusuke</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumi, Tomoaki</au><au>Takino, Junichi</au><au>Okayama, Yoshio</au><au>Usami, Shigeyoshi</au><au>Imanishi, Masayuki</au><au>Yoshimura, Masashi</au><au>Mori, Yusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</atitle><jtitle>physica status solidi (b)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>261</volume><issue>11</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power. Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.</abstract><doi>10.1002/pssb.202400027</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0000-4117-4769</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2024-11, Vol.261 (11), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_202400027
source Wiley Online Library Journals Frontfile Complete
subjects crystal colors
dopings
impurities
nitride semiconductors
point defects
title Origin of Black Color in Heavily Doped n‐Type GaN Crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Black%20Color%20in%20Heavily%20Doped%20n%E2%80%90Type%20GaN%20Crystal&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Sumi,%20Tomoaki&rft.date=2024-11&rft.volume=261&rft.issue=11&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202400027&rft_dat=%3Cwiley_cross%3EPSSB202400027%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true