Origin of Black Color in Heavily Doped n‐Type GaN Crystal
In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses...
Gespeichert in:
Veröffentlicht in: | physica status solidi (b) 2024-11, Vol.261 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | physica status solidi (b) |
container_volume | 261 |
creator | Sumi, Tomoaki Takino, Junichi Okayama, Yoshio Usami, Shigeyoshi Imanishi, Masayuki Yoshimura, Masashi Mori, Yusuke |
description | In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power.
Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed. |
doi_str_mv | 10.1002/pssb.202400027 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202400027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202400027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-e8f7ef6ffa5e578546222f861651772b62f324197efb7ce5e1bdf2ba85cf4a963</originalsourceid><addsrcrecordid>eNqFj8FKw0AQhhdRMFavnvcFUncn2WyCJxttKxQrtJ6XTToj0bUJu6Lk5iP4jD6JKRU9ehr-4f-G-Rg7l2IshYCLLoRqDAJSMSR9wCKpQMZJoeQhi0SiRSwLDcfsJISnoaJlIiN2ufTNY7PlLfGJs_UzL1vXej5s5mjfGtfz67bDDd9-fXyu-w75zN7x0vfh1bpTdkTWBTz7mSP2ML1Zl_N4sZzdlleLuAYNOsacNFJGZBUqnas0AwDKM5kpqTVUGVAC6fAbUqVrVCirDUFlc1VTaossGbHx_m7t2xA8kul882J9b6QwO3WzUze_6gNQ7IH3xmH_T9vcr1aTP_YbOatdSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sumi, Tomoaki ; Takino, Junichi ; Okayama, Yoshio ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</creator><creatorcontrib>Sumi, Tomoaki ; Takino, Junichi ; Okayama, Yoshio ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</creatorcontrib><description>In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power.
Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202400027</identifier><language>eng</language><subject>crystal colors ; dopings ; impurities ; nitride semiconductors ; point defects</subject><ispartof>physica status solidi (b), 2024-11, Vol.261 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-e8f7ef6ffa5e578546222f861651772b62f324197efb7ce5e1bdf2ba85cf4a963</cites><orcidid>0009-0000-4117-4769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.202400027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.202400027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Sumi, Tomoaki</creatorcontrib><creatorcontrib>Takino, Junichi</creatorcontrib><creatorcontrib>Okayama, Yoshio</creatorcontrib><creatorcontrib>Usami, Shigeyoshi</creatorcontrib><creatorcontrib>Imanishi, Masayuki</creatorcontrib><creatorcontrib>Yoshimura, Masashi</creatorcontrib><creatorcontrib>Mori, Yusuke</creatorcontrib><title>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</title><title>physica status solidi (b)</title><description>In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power.
Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.</description><subject>crystal colors</subject><subject>dopings</subject><subject>impurities</subject><subject>nitride semiconductors</subject><subject>point defects</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj8FKw0AQhhdRMFavnvcFUncn2WyCJxttKxQrtJ6XTToj0bUJu6Lk5iP4jD6JKRU9ehr-4f-G-Rg7l2IshYCLLoRqDAJSMSR9wCKpQMZJoeQhi0SiRSwLDcfsJISnoaJlIiN2ufTNY7PlLfGJs_UzL1vXej5s5mjfGtfz67bDDd9-fXyu-w75zN7x0vfh1bpTdkTWBTz7mSP2ML1Zl_N4sZzdlleLuAYNOsacNFJGZBUqnas0AwDKM5kpqTVUGVAC6fAbUqVrVCirDUFlc1VTaossGbHx_m7t2xA8kul882J9b6QwO3WzUze_6gNQ7IH3xmH_T9vcr1aTP_YbOatdSg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Sumi, Tomoaki</creator><creator>Takino, Junichi</creator><creator>Okayama, Yoshio</creator><creator>Usami, Shigeyoshi</creator><creator>Imanishi, Masayuki</creator><creator>Yoshimura, Masashi</creator><creator>Mori, Yusuke</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-4117-4769</orcidid></search><sort><creationdate>202411</creationdate><title>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</title><author>Sumi, Tomoaki ; Takino, Junichi ; Okayama, Yoshio ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-e8f7ef6ffa5e578546222f861651772b62f324197efb7ce5e1bdf2ba85cf4a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>crystal colors</topic><topic>dopings</topic><topic>impurities</topic><topic>nitride semiconductors</topic><topic>point defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumi, Tomoaki</creatorcontrib><creatorcontrib>Takino, Junichi</creatorcontrib><creatorcontrib>Okayama, Yoshio</creatorcontrib><creatorcontrib>Usami, Shigeyoshi</creatorcontrib><creatorcontrib>Imanishi, Masayuki</creatorcontrib><creatorcontrib>Yoshimura, Masashi</creatorcontrib><creatorcontrib>Mori, Yusuke</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumi, Tomoaki</au><au>Takino, Junichi</au><au>Okayama, Yoshio</au><au>Usami, Shigeyoshi</au><au>Imanishi, Masayuki</au><au>Yoshimura, Masashi</au><au>Mori, Yusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Black Color in Heavily Doped n‐Type GaN Crystal</atitle><jtitle>physica status solidi (b)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>261</volume><issue>11</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>In semiconductor materials, doping is used mainly for controlling the electrical properties. There have been attempts to grow low‐resistivity n‐type gallium nitride (GaN) crystals by doping oxygen, germanium, and silicon, because a low‐resistivity GaN substrate is required to reduce the power losses of optical and electrical devices. However, in those efforts, the crystal color turns black with the increase in the concentration of the n‐type additives, even though they are shallow donors. Herein, it is explained why heavily doped n‐type GaN crystals exhibit low transparency. From optical absorption profiles, the appearance of a band tail from the band edge to 1.5 eV is observed. Considering the band tail theory and our observations, it is concluded that Ga vacancy or Ga vacancy complexes behaving as acceptors induce the band tail and the black color. It is proposed that neutralizing the high charge of defects ensures that low‐colored GaN crystals with low resistivity can be obtained. Moreover, the fabrication of low‐resistivity wafers sliced from a large crystal with a laser produces inexpensive wafers and allows the spread of high‐efficiency GaN devices fabricated on low‐resistivity substrates for saving electric power.
Dark‐ and light‐colored gallium nitride (GaN) crystals can be grown by oxide vapor phase epitaxy, “OVPE,” under different growth conditions. The resistivity and dislocation density of the wafers are around 0.5 mΩ cm and 1 × 10−5 cm−2, respectively. Herein, the cause of the black color in heavily doped n‐type GaN crystal is discussed.</abstract><doi>10.1002/pssb.202400027</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0000-4117-4769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | physica status solidi (b), 2024-11, Vol.261 (11), p.n/a |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssb_202400027 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | crystal colors dopings impurities nitride semiconductors point defects |
title | Origin of Black Color in Heavily Doped n‐Type GaN Crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Black%20Color%20in%20Heavily%20Doped%20n%E2%80%90Type%20GaN%20Crystal&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Sumi,%20Tomoaki&rft.date=2024-11&rft.volume=261&rft.issue=11&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202400027&rft_dat=%3Cwiley_cross%3EPSSB202400027%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |