Investigation on New Orthorhombic AuR (R = Ho, Tb, Y) and PdR (R = Eu,Gd,Y) Equiatomic Compounds’ Structural, Vibrational, and Thermal Properties

Herein, first‐principles calculations using the planewave pseudopotential technique to assess the structural, elastic, vibrational, and thermal properties of equiatomic intermetallic consisting of rare earth elements (Eu, Gd, Ho, Y, Tb) and noble metals (Au, Pd) are used. This approach involves opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2024-09, Vol.261 (9), p.n/a
Hauptverfasser: Ferroudj, Abdelhak, Djaballah, Yassine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, first‐principles calculations using the planewave pseudopotential technique to assess the structural, elastic, vibrational, and thermal properties of equiatomic intermetallic consisting of rare earth elements (Eu, Gd, Ho, Y, Tb) and noble metals (Au, Pd) are used. This approach involves optimizing novel orthorhombic structures by minimizing the total energy and interatomic forces. The computed structural features for the investigated intermetallics closely align with available experimental data. By evaluating stability criteria using the derived elastic constants, this analysis verifies the stability of these intermetallics in an orthorhombic structure at zero pressure. Furthermore, various mechanical parameters are determined, including (Young's E, bulk B, shear G, Pugh's) modulus, Poisson's ratio, and anisotropy factors. These parameters are derived from the computed single‐crystal elastic constants using the Voigt–Reuss–Hill average method. This investigation delves into the relationship between temperature and variations in heat capacity at constant volume (Cv) and entropy (S), comprehensively exploring these variables. The structural, elastic, vibrational, and thermal properties of six equiatomic intermetallics comprising rare earth elements (Eu, Gd, Ho, Y, Tb) and noble metals (Au, Pd) are investigated using first‐principles calculations. This approach aims to optimize newly discovered orthorhombic structures by minimizing the total energy and interatomic forces.
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.202400005