Realization of High‐Resistive Ni‐Doped GaN Crystal by Hydride Vapor‐Phase Epitaxy

Herein, high‐resistivity GaN is studied for use as an epitaxial substrate in lateral power devices. Fe‐, C‐, Mn‐, and Zn‐doped GaN monocrystals have high resistivity at a doping concentration of ≈1 × 1018 cm−3. However, a low doping concentration is preferred for growing GaN monocrystals; therefore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2024-11, Vol.261 (11), p.n/a
Hauptverfasser: Odani, Takafumi, Iso, Kenji, Oshima, Yuichi, Ikeda, Hirotaka, Mochizuki, Tae, Izumisawa, Satoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title physica status solidi (b)
container_volume 261
creator Odani, Takafumi
Iso, Kenji
Oshima, Yuichi
Ikeda, Hirotaka
Mochizuki, Tae
Izumisawa, Satoru
description Herein, high‐resistivity GaN is studied for use as an epitaxial substrate in lateral power devices. Fe‐, C‐, Mn‐, and Zn‐doped GaN monocrystals have high resistivity at a doping concentration of ≈1 × 1018 cm−3. However, a low doping concentration is preferred for growing GaN monocrystals; therefore, other dopants for GaN that yield high resistivity at a doping concentration less than 1 × 1018 cm−3 must be identified. Herein, NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Two Ni‐doped GaN substrates with Ni concentrations corresponding to 2.7 × 1017 and 2.9 × 1018 cm−3 are obtained by varying the partial pressure of NiCl2. The resistivity of Ni‐doped GaN monocrystals is measured as a function of temperature using Hall effect measurements. The GaN monocrystals doped with 2.7 × 1017 cm−3 of Ni have a higher resistivity than those doped with 2.9 × 1018 cm−3 of Ni at 600–900 K. Charge‐neutrality calculations have shown that the depth of the Ni acceptor level in GaN is 1.4–1.5 eV, indicating that Ni‐doped GaN monocrystals have high resistivity owing to the deep acceptor level of Ni. This study shows that NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Hall effect measurements show that the Ni‐doped GaN monocrystals are semi‐insulating. Also, this study reveals the origin of the high resistivities of the Ni‐doped GaN monocrystals by charge‐neutrality calculations.
doi_str_mv 10.1002/pssb.202300584
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202300584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202300584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-5a933367118751421f3a231cc39f633aa5d5404e8c7f3e4ff4bfa5deae2ec3743</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZe0LpHg8Tt0soZQWqSpVy88ycpMxNQoksqNCWHEEzshJSFUES1ajN3rfW3yMnYLogRDyrAph1ZNCohDxQO2xDsQSIkxi2GcdgVpEkGh5yI5CeBJCaEDosIcFmcK9m9qVL7y0fOIe118fnwsKLtRuQ3zm2nhZVpTzsZnxoW9CbQq-avikyb3Lid-bqvRtab42gfiocrV5a47ZgTVFoJOf22V3V6Pb4SSa3oyvh-fTKJNaqig2CSL2NcBAx6AkWDQSIcswsX1EY-I8VkLRINMWSVmrVrb9kSFJGWqFXdbb7Wa-DMGTTSvvno1vUhDpVku61ZL-ammBZAe8uoKaf9rpfLm8-GO_AYxEagM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Realization of High‐Resistive Ni‐Doped GaN Crystal by Hydride Vapor‐Phase Epitaxy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Odani, Takafumi ; Iso, Kenji ; Oshima, Yuichi ; Ikeda, Hirotaka ; Mochizuki, Tae ; Izumisawa, Satoru</creator><creatorcontrib>Odani, Takafumi ; Iso, Kenji ; Oshima, Yuichi ; Ikeda, Hirotaka ; Mochizuki, Tae ; Izumisawa, Satoru</creatorcontrib><description>Herein, high‐resistivity GaN is studied for use as an epitaxial substrate in lateral power devices. Fe‐, C‐, Mn‐, and Zn‐doped GaN monocrystals have high resistivity at a doping concentration of ≈1 × 1018 cm−3. However, a low doping concentration is preferred for growing GaN monocrystals; therefore, other dopants for GaN that yield high resistivity at a doping concentration less than 1 × 1018 cm−3 must be identified. Herein, NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Two Ni‐doped GaN substrates with Ni concentrations corresponding to 2.7 × 1017 and 2.9 × 1018 cm−3 are obtained by varying the partial pressure of NiCl2. The resistivity of Ni‐doped GaN monocrystals is measured as a function of temperature using Hall effect measurements. The GaN monocrystals doped with 2.7 × 1017 cm−3 of Ni have a higher resistivity than those doped with 2.9 × 1018 cm−3 of Ni at 600–900 K. Charge‐neutrality calculations have shown that the depth of the Ni acceptor level in GaN is 1.4–1.5 eV, indicating that Ni‐doped GaN monocrystals have high resistivity owing to the deep acceptor level of Ni. This study shows that NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Hall effect measurements show that the Ni‐doped GaN monocrystals are semi‐insulating. Also, this study reveals the origin of the high resistivities of the Ni‐doped GaN monocrystals by charge‐neutrality calculations.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202300584</identifier><language>eng</language><subject>doping ; GaN growth ; hydride vapor‐phase epitaxy ; semi‐insulating</subject><ispartof>physica status solidi (b), 2024-11, Vol.261 (11), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-5a933367118751421f3a231cc39f633aa5d5404e8c7f3e4ff4bfa5deae2ec3743</cites><orcidid>0009-0007-6735-6692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.202300584$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.202300584$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Odani, Takafumi</creatorcontrib><creatorcontrib>Iso, Kenji</creatorcontrib><creatorcontrib>Oshima, Yuichi</creatorcontrib><creatorcontrib>Ikeda, Hirotaka</creatorcontrib><creatorcontrib>Mochizuki, Tae</creatorcontrib><creatorcontrib>Izumisawa, Satoru</creatorcontrib><title>Realization of High‐Resistive Ni‐Doped GaN Crystal by Hydride Vapor‐Phase Epitaxy</title><title>physica status solidi (b)</title><description>Herein, high‐resistivity GaN is studied for use as an epitaxial substrate in lateral power devices. Fe‐, C‐, Mn‐, and Zn‐doped GaN monocrystals have high resistivity at a doping concentration of ≈1 × 1018 cm−3. However, a low doping concentration is preferred for growing GaN monocrystals; therefore, other dopants for GaN that yield high resistivity at a doping concentration less than 1 × 1018 cm−3 must be identified. Herein, NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Two Ni‐doped GaN substrates with Ni concentrations corresponding to 2.7 × 1017 and 2.9 × 1018 cm−3 are obtained by varying the partial pressure of NiCl2. The resistivity of Ni‐doped GaN monocrystals is measured as a function of temperature using Hall effect measurements. The GaN monocrystals doped with 2.7 × 1017 cm−3 of Ni have a higher resistivity than those doped with 2.9 × 1018 cm−3 of Ni at 600–900 K. Charge‐neutrality calculations have shown that the depth of the Ni acceptor level in GaN is 1.4–1.5 eV, indicating that Ni‐doped GaN monocrystals have high resistivity owing to the deep acceptor level of Ni. This study shows that NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Hall effect measurements show that the Ni‐doped GaN monocrystals are semi‐insulating. Also, this study reveals the origin of the high resistivities of the Ni‐doped GaN monocrystals by charge‐neutrality calculations.</description><subject>doping</subject><subject>GaN growth</subject><subject>hydride vapor‐phase epitaxy</subject><subject>semi‐insulating</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZe0LpHg8Tt0soZQWqSpVy88ycpMxNQoksqNCWHEEzshJSFUES1ajN3rfW3yMnYLogRDyrAph1ZNCohDxQO2xDsQSIkxi2GcdgVpEkGh5yI5CeBJCaEDosIcFmcK9m9qVL7y0fOIe118fnwsKLtRuQ3zm2nhZVpTzsZnxoW9CbQq-avikyb3Lid-bqvRtab42gfiocrV5a47ZgTVFoJOf22V3V6Pb4SSa3oyvh-fTKJNaqig2CSL2NcBAx6AkWDQSIcswsX1EY-I8VkLRINMWSVmrVrb9kSFJGWqFXdbb7Wa-DMGTTSvvno1vUhDpVku61ZL-ammBZAe8uoKaf9rpfLm8-GO_AYxEagM</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Odani, Takafumi</creator><creator>Iso, Kenji</creator><creator>Oshima, Yuichi</creator><creator>Ikeda, Hirotaka</creator><creator>Mochizuki, Tae</creator><creator>Izumisawa, Satoru</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0007-6735-6692</orcidid></search><sort><creationdate>202411</creationdate><title>Realization of High‐Resistive Ni‐Doped GaN Crystal by Hydride Vapor‐Phase Epitaxy</title><author>Odani, Takafumi ; Iso, Kenji ; Oshima, Yuichi ; Ikeda, Hirotaka ; Mochizuki, Tae ; Izumisawa, Satoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-5a933367118751421f3a231cc39f633aa5d5404e8c7f3e4ff4bfa5deae2ec3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>doping</topic><topic>GaN growth</topic><topic>hydride vapor‐phase epitaxy</topic><topic>semi‐insulating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odani, Takafumi</creatorcontrib><creatorcontrib>Iso, Kenji</creatorcontrib><creatorcontrib>Oshima, Yuichi</creatorcontrib><creatorcontrib>Ikeda, Hirotaka</creatorcontrib><creatorcontrib>Mochizuki, Tae</creatorcontrib><creatorcontrib>Izumisawa, Satoru</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odani, Takafumi</au><au>Iso, Kenji</au><au>Oshima, Yuichi</au><au>Ikeda, Hirotaka</au><au>Mochizuki, Tae</au><au>Izumisawa, Satoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of High‐Resistive Ni‐Doped GaN Crystal by Hydride Vapor‐Phase Epitaxy</atitle><jtitle>physica status solidi (b)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>261</volume><issue>11</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Herein, high‐resistivity GaN is studied for use as an epitaxial substrate in lateral power devices. Fe‐, C‐, Mn‐, and Zn‐doped GaN monocrystals have high resistivity at a doping concentration of ≈1 × 1018 cm−3. However, a low doping concentration is preferred for growing GaN monocrystals; therefore, other dopants for GaN that yield high resistivity at a doping concentration less than 1 × 1018 cm−3 must be identified. Herein, NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Two Ni‐doped GaN substrates with Ni concentrations corresponding to 2.7 × 1017 and 2.9 × 1018 cm−3 are obtained by varying the partial pressure of NiCl2. The resistivity of Ni‐doped GaN monocrystals is measured as a function of temperature using Hall effect measurements. The GaN monocrystals doped with 2.7 × 1017 cm−3 of Ni have a higher resistivity than those doped with 2.9 × 1018 cm−3 of Ni at 600–900 K. Charge‐neutrality calculations have shown that the depth of the Ni acceptor level in GaN is 1.4–1.5 eV, indicating that Ni‐doped GaN monocrystals have high resistivity owing to the deep acceptor level of Ni. This study shows that NiCl2 is used as a precursor to grow Ni‐doped GaN monocrystals on GaN substrates via hydride vapor‐phase epitaxy. Hall effect measurements show that the Ni‐doped GaN monocrystals are semi‐insulating. Also, this study reveals the origin of the high resistivities of the Ni‐doped GaN monocrystals by charge‐neutrality calculations.</abstract><doi>10.1002/pssb.202300584</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0007-6735-6692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2024-11, Vol.261 (11), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_202300584
source Wiley Online Library Journals Frontfile Complete
subjects doping
GaN growth
hydride vapor‐phase epitaxy
semi‐insulating
title Realization of High‐Resistive Ni‐Doped GaN Crystal by Hydride Vapor‐Phase Epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20High%E2%80%90Resistive%20Ni%E2%80%90Doped%20GaN%20Crystal%20by%20Hydride%20Vapor%E2%80%90Phase%20Epitaxy&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Odani,%20Takafumi&rft.date=2024-11&rft.volume=261&rft.issue=11&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202300584&rft_dat=%3Cwiley_cross%3EPSSB202300584%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true