Compositional Dependence of Infrared Transmission in Ge‐Based Chalcogenide Glasses
As for an optically homogeneous glass with thickness tantamount to a few millimeters, the longer wavelength side of its optical transmission window normally takes shape as a result of multiphonon absorption. Mainly due to the complexity inherent in glass structures, a quantitative numerical assessme...
Gespeichert in:
Veröffentlicht in: | physica status solidi (b) 2020-11, Vol.257 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | physica status solidi (b) |
container_volume | 257 |
creator | Kim, Hyun Lee, Jun Ho Lee, Ji In Ko, Se Young Choi, Yong Gyu |
description | As for an optically homogeneous glass with thickness tantamount to a few millimeters, the longer wavelength side of its optical transmission window normally takes shape as a result of multiphonon absorption. Mainly due to the complexity inherent in glass structures, a quantitative numerical assessment of the vibrational spectrum of a given glass composition is normally not a simple task. The conspicuously dissimilar infrared transmission edges between oxide and halide glasses, for example, can be understood qualitatively in terms of the Szigeti relation; however, the relatively insignificant but clearly distinguishable changes in infrared transmission edge resulting from compositional modification in a glass‐forming system are lacking a numerical assessment. Herein, it is experimentally verified that the infrared transmission edge of Ge‐based chalcogenide glasses can be correlated in a quantitative manner with their chemical composition through combining their average bond energy and molar mass. Ternary or quaternary chalcogenide glasses exceeding 100 different compositions are used to justify this numerical correlation.
The infrared transmission edge of Ge‐containing chalcogenide glasses turns out to be quantitatively estimated solely based on their chemical composition via average bond energy and molar mass. This compositional dependence is also verified in the case of mixed‐chalcogen glasses. Refractive index dispersion of chalcogenide glasses in the long‐wavelength infrared range is then facilely deduced. |
doi_str_mv | 10.1002/pssb.202000164 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202000164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB202000164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-d5f621db5970460c8e1d54be4d21b408eceae556294e9bd2b575e0aedf6b16573</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMvsFEnyOHTcjDVAqVQKpZY7s-AJGqRPlkFA3HoFn5ElIVQQj0w33ff_wMXYJIgUh5FVP5FIppBACcnXEJqAlJFmh4ZhNRGZEAoWRp-yM6HVkDGQwYZuy2_YdhbfQRdvyG-wxeow18q7hy9gMdkDPN4ONtA1EI8VD5Av8-vicWxpf5Ytt6-4ZY_DIF60lQjpnJ41tCS9-7pQ93d1uyvtk9bBYlterpM7AqMTrJpfgnS6MULmoZwheK4fKS3BKzLBGi1rnslBYOC-dNhqFRd_kDnJtsilLD7v10BEN2FT9ELZ22FUgqn2Tat-k-m0yCsVBeA8t7v6hq8f1ev7nfgMkpmfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compositional Dependence of Infrared Transmission in Ge‐Based Chalcogenide Glasses</title><source>Wiley Online Library All Journals</source><creator>Kim, Hyun ; Lee, Jun Ho ; Lee, Ji In ; Ko, Se Young ; Choi, Yong Gyu</creator><creatorcontrib>Kim, Hyun ; Lee, Jun Ho ; Lee, Ji In ; Ko, Se Young ; Choi, Yong Gyu</creatorcontrib><description>As for an optically homogeneous glass with thickness tantamount to a few millimeters, the longer wavelength side of its optical transmission window normally takes shape as a result of multiphonon absorption. Mainly due to the complexity inherent in glass structures, a quantitative numerical assessment of the vibrational spectrum of a given glass composition is normally not a simple task. The conspicuously dissimilar infrared transmission edges between oxide and halide glasses, for example, can be understood qualitatively in terms of the Szigeti relation; however, the relatively insignificant but clearly distinguishable changes in infrared transmission edge resulting from compositional modification in a glass‐forming system are lacking a numerical assessment. Herein, it is experimentally verified that the infrared transmission edge of Ge‐based chalcogenide glasses can be correlated in a quantitative manner with their chemical composition through combining their average bond energy and molar mass. Ternary or quaternary chalcogenide glasses exceeding 100 different compositions are used to justify this numerical correlation.
The infrared transmission edge of Ge‐containing chalcogenide glasses turns out to be quantitatively estimated solely based on their chemical composition via average bond energy and molar mass. This compositional dependence is also verified in the case of mixed‐chalcogen glasses. Refractive index dispersion of chalcogenide glasses in the long‐wavelength infrared range is then facilely deduced.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202000164</identifier><language>eng</language><subject>chalcogenide glasses ; infrared transmission edge ; molded lens ; thermal imaging</subject><ispartof>physica status solidi (b), 2020-11, Vol.257 (11), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-d5f621db5970460c8e1d54be4d21b408eceae556294e9bd2b575e0aedf6b16573</citedby><cites>FETCH-LOGICAL-c3174-d5f621db5970460c8e1d54be4d21b408eceae556294e9bd2b575e0aedf6b16573</cites><orcidid>0000-0002-7855-5634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.202000164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.202000164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kim, Hyun</creatorcontrib><creatorcontrib>Lee, Jun Ho</creatorcontrib><creatorcontrib>Lee, Ji In</creatorcontrib><creatorcontrib>Ko, Se Young</creatorcontrib><creatorcontrib>Choi, Yong Gyu</creatorcontrib><title>Compositional Dependence of Infrared Transmission in Ge‐Based Chalcogenide Glasses</title><title>physica status solidi (b)</title><description>As for an optically homogeneous glass with thickness tantamount to a few millimeters, the longer wavelength side of its optical transmission window normally takes shape as a result of multiphonon absorption. Mainly due to the complexity inherent in glass structures, a quantitative numerical assessment of the vibrational spectrum of a given glass composition is normally not a simple task. The conspicuously dissimilar infrared transmission edges between oxide and halide glasses, for example, can be understood qualitatively in terms of the Szigeti relation; however, the relatively insignificant but clearly distinguishable changes in infrared transmission edge resulting from compositional modification in a glass‐forming system are lacking a numerical assessment. Herein, it is experimentally verified that the infrared transmission edge of Ge‐based chalcogenide glasses can be correlated in a quantitative manner with their chemical composition through combining their average bond energy and molar mass. Ternary or quaternary chalcogenide glasses exceeding 100 different compositions are used to justify this numerical correlation.
The infrared transmission edge of Ge‐containing chalcogenide glasses turns out to be quantitatively estimated solely based on their chemical composition via average bond energy and molar mass. This compositional dependence is also verified in the case of mixed‐chalcogen glasses. Refractive index dispersion of chalcogenide glasses in the long‐wavelength infrared range is then facilely deduced.</description><subject>chalcogenide glasses</subject><subject>infrared transmission edge</subject><subject>molded lens</subject><subject>thermal imaging</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMvsFEnyOHTcjDVAqVQKpZY7s-AJGqRPlkFA3HoFn5ElIVQQj0w33ff_wMXYJIgUh5FVP5FIppBACcnXEJqAlJFmh4ZhNRGZEAoWRp-yM6HVkDGQwYZuy2_YdhbfQRdvyG-wxeow18q7hy9gMdkDPN4ONtA1EI8VD5Av8-vicWxpf5Ytt6-4ZY_DIF60lQjpnJ41tCS9-7pQ93d1uyvtk9bBYlterpM7AqMTrJpfgnS6MULmoZwheK4fKS3BKzLBGi1rnslBYOC-dNhqFRd_kDnJtsilLD7v10BEN2FT9ELZ22FUgqn2Tat-k-m0yCsVBeA8t7v6hq8f1ev7nfgMkpmfw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Kim, Hyun</creator><creator>Lee, Jun Ho</creator><creator>Lee, Ji In</creator><creator>Ko, Se Young</creator><creator>Choi, Yong Gyu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7855-5634</orcidid></search><sort><creationdate>202011</creationdate><title>Compositional Dependence of Infrared Transmission in Ge‐Based Chalcogenide Glasses</title><author>Kim, Hyun ; Lee, Jun Ho ; Lee, Ji In ; Ko, Se Young ; Choi, Yong Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-d5f621db5970460c8e1d54be4d21b408eceae556294e9bd2b575e0aedf6b16573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>chalcogenide glasses</topic><topic>infrared transmission edge</topic><topic>molded lens</topic><topic>thermal imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyun</creatorcontrib><creatorcontrib>Lee, Jun Ho</creatorcontrib><creatorcontrib>Lee, Ji In</creatorcontrib><creatorcontrib>Ko, Se Young</creatorcontrib><creatorcontrib>Choi, Yong Gyu</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyun</au><au>Lee, Jun Ho</au><au>Lee, Ji In</au><au>Ko, Se Young</au><au>Choi, Yong Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional Dependence of Infrared Transmission in Ge‐Based Chalcogenide Glasses</atitle><jtitle>physica status solidi (b)</jtitle><date>2020-11</date><risdate>2020</risdate><volume>257</volume><issue>11</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>As for an optically homogeneous glass with thickness tantamount to a few millimeters, the longer wavelength side of its optical transmission window normally takes shape as a result of multiphonon absorption. Mainly due to the complexity inherent in glass structures, a quantitative numerical assessment of the vibrational spectrum of a given glass composition is normally not a simple task. The conspicuously dissimilar infrared transmission edges between oxide and halide glasses, for example, can be understood qualitatively in terms of the Szigeti relation; however, the relatively insignificant but clearly distinguishable changes in infrared transmission edge resulting from compositional modification in a glass‐forming system are lacking a numerical assessment. Herein, it is experimentally verified that the infrared transmission edge of Ge‐based chalcogenide glasses can be correlated in a quantitative manner with their chemical composition through combining their average bond energy and molar mass. Ternary or quaternary chalcogenide glasses exceeding 100 different compositions are used to justify this numerical correlation.
The infrared transmission edge of Ge‐containing chalcogenide glasses turns out to be quantitatively estimated solely based on their chemical composition via average bond energy and molar mass. This compositional dependence is also verified in the case of mixed‐chalcogen glasses. Refractive index dispersion of chalcogenide glasses in the long‐wavelength infrared range is then facilely deduced.</abstract><doi>10.1002/pssb.202000164</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7855-5634</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | physica status solidi (b), 2020-11, Vol.257 (11), p.n/a |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssb_202000164 |
source | Wiley Online Library All Journals |
subjects | chalcogenide glasses infrared transmission edge molded lens thermal imaging |
title | Compositional Dependence of Infrared Transmission in Ge‐Based Chalcogenide Glasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20Dependence%20of%20Infrared%20Transmission%20in%20Ge%E2%80%90Based%20Chalcogenide%20Glasses&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Kim,%20Hyun&rft.date=2020-11&rft.volume=257&rft.issue=11&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202000164&rft_dat=%3Cwiley_cross%3EPSSB202000164%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |