Hall Effect Characterization of α‐Irradiated p‐Type 4H‐SiC

Most electrical characterization of radiation damage to semiconductors is conducted on full devices or on low‐doped material. However, evaluating the radiation hardness is challenging in less mature semiconductor systems where low‐doped material is unavailable and full devices are difficult to reali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2021-03, Vol.258 (3), p.n/a
Hauptverfasser: Frye, Clint D., Murphy, John W., Shao, Qinghui, Voss, Lars F., Harrison, Sara E., Edgar, James H., Nikolić, Rebecca J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title physica status solidi (b)
container_volume 258
creator Frye, Clint D.
Murphy, John W.
Shao, Qinghui
Voss, Lars F.
Harrison, Sara E.
Edgar, James H.
Nikolić, Rebecca J.
description Most electrical characterization of radiation damage to semiconductors is conducted on full devices or on low‐doped material. However, evaluating the radiation hardness is challenging in less mature semiconductor systems where low‐doped material is unavailable and full devices are difficult to realize. Herein, temperature‐dependent Hall effect measurements are used to demonstrate α particle‐induced radiation effects in p‐type 4H‐SiC with a room temperature hole concentration of 1.8×1017cm−3. The 4H‐SiC is irradiated by α particles from a 210Po source over a fluence of 1×1011–1×1013α cm−2. Modeling the hole concentration as a function of temperature shows that α radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers. At low temperatures and increasingly higher fluences, the conduction mechanism changes from band conduction to another mechanism. p‐type 4H‐SiC is irradiated by α particles from a 210Po sealed source over a fluence of 1 × 1011–1 × 1013 α cm−2. Modeling hole concentration as a function of temperature shows that the radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers.
doi_str_mv 10.1002/pssb.201900781
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_201900781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201900781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-e51f8edfdff9af5927cd6f3d8b61c3f206a78905dc34f337760d185ad6e74d143</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRMFavnvMCqTO7STZ7rKHaQkEh9Ry2uzsYiSbsBqSefARfxRfxIfokplT06Gn-gf8bho-xS4QpAvCrPoTNlAMqAFngEYsw45gIleExi0BISFBJfsrOQniCsYMCIzZb6LaN50TODHH5qL02g_PNmx6a7iXuKP763L1_LL3XttGDs3E_rutt7-J0MaaqKc_ZCek2uIufOWEPN_N1uUhWd7fLcrZKDJfjHy5DKpwlS6Q0ZYpLY3MSttjkaARxyLUsFGTWiJSEkDIHi0Wmbe5kajEVEzY93DW-C8E7qnvfPGu_rRHqvYB6L6D-FTAC6gC8Nq3b_tOu76vq-o_9BuvbYr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hall Effect Characterization of α‐Irradiated p‐Type 4H‐SiC</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Frye, Clint D. ; Murphy, John W. ; Shao, Qinghui ; Voss, Lars F. ; Harrison, Sara E. ; Edgar, James H. ; Nikolić, Rebecca J.</creator><creatorcontrib>Frye, Clint D. ; Murphy, John W. ; Shao, Qinghui ; Voss, Lars F. ; Harrison, Sara E. ; Edgar, James H. ; Nikolić, Rebecca J.</creatorcontrib><description>Most electrical characterization of radiation damage to semiconductors is conducted on full devices or on low‐doped material. However, evaluating the radiation hardness is challenging in less mature semiconductor systems where low‐doped material is unavailable and full devices are difficult to realize. Herein, temperature‐dependent Hall effect measurements are used to demonstrate α particle‐induced radiation effects in p‐type 4H‐SiC with a room temperature hole concentration of 1.8×1017cm−3. The 4H‐SiC is irradiated by α particles from a 210Po source over a fluence of 1×1011–1×1013α cm−2. Modeling the hole concentration as a function of temperature shows that α radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers. At low temperatures and increasingly higher fluences, the conduction mechanism changes from band conduction to another mechanism. p‐type 4H‐SiC is irradiated by α particles from a 210Po sealed source over a fluence of 1 × 1011–1 × 1013 α cm−2. Modeling hole concentration as a function of temperature shows that the radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201900781</identifier><language>eng</language><subject>electronic transport ; Hall effect ; radiation damage ; silicon carbide</subject><ispartof>physica status solidi (b), 2021-03, Vol.258 (3), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2721-e51f8edfdff9af5927cd6f3d8b61c3f206a78905dc34f337760d185ad6e74d143</cites><orcidid>0000-0002-6370-8167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201900781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201900781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Frye, Clint D.</creatorcontrib><creatorcontrib>Murphy, John W.</creatorcontrib><creatorcontrib>Shao, Qinghui</creatorcontrib><creatorcontrib>Voss, Lars F.</creatorcontrib><creatorcontrib>Harrison, Sara E.</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Nikolić, Rebecca J.</creatorcontrib><title>Hall Effect Characterization of α‐Irradiated p‐Type 4H‐SiC</title><title>physica status solidi (b)</title><description>Most electrical characterization of radiation damage to semiconductors is conducted on full devices or on low‐doped material. However, evaluating the radiation hardness is challenging in less mature semiconductor systems where low‐doped material is unavailable and full devices are difficult to realize. Herein, temperature‐dependent Hall effect measurements are used to demonstrate α particle‐induced radiation effects in p‐type 4H‐SiC with a room temperature hole concentration of 1.8×1017cm−3. The 4H‐SiC is irradiated by α particles from a 210Po source over a fluence of 1×1011–1×1013α cm−2. Modeling the hole concentration as a function of temperature shows that α radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers. At low temperatures and increasingly higher fluences, the conduction mechanism changes from band conduction to another mechanism. p‐type 4H‐SiC is irradiated by α particles from a 210Po sealed source over a fluence of 1 × 1011–1 × 1013 α cm−2. Modeling hole concentration as a function of temperature shows that the radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers.</description><subject>electronic transport</subject><subject>Hall effect</subject><subject>radiation damage</subject><subject>silicon carbide</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRMFavnvMCqTO7STZ7rKHaQkEh9Ry2uzsYiSbsBqSefARfxRfxIfokplT06Gn-gf8bho-xS4QpAvCrPoTNlAMqAFngEYsw45gIleExi0BISFBJfsrOQniCsYMCIzZb6LaN50TODHH5qL02g_PNmx6a7iXuKP763L1_LL3XttGDs3E_rutt7-J0MaaqKc_ZCek2uIufOWEPN_N1uUhWd7fLcrZKDJfjHy5DKpwlS6Q0ZYpLY3MSttjkaARxyLUsFGTWiJSEkDIHi0Wmbe5kajEVEzY93DW-C8E7qnvfPGu_rRHqvYB6L6D-FTAC6gC8Nq3b_tOu76vq-o_9BuvbYr8</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Frye, Clint D.</creator><creator>Murphy, John W.</creator><creator>Shao, Qinghui</creator><creator>Voss, Lars F.</creator><creator>Harrison, Sara E.</creator><creator>Edgar, James H.</creator><creator>Nikolić, Rebecca J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6370-8167</orcidid></search><sort><creationdate>202103</creationdate><title>Hall Effect Characterization of α‐Irradiated p‐Type 4H‐SiC</title><author>Frye, Clint D. ; Murphy, John W. ; Shao, Qinghui ; Voss, Lars F. ; Harrison, Sara E. ; Edgar, James H. ; Nikolić, Rebecca J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-e51f8edfdff9af5927cd6f3d8b61c3f206a78905dc34f337760d185ad6e74d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>electronic transport</topic><topic>Hall effect</topic><topic>radiation damage</topic><topic>silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frye, Clint D.</creatorcontrib><creatorcontrib>Murphy, John W.</creatorcontrib><creatorcontrib>Shao, Qinghui</creatorcontrib><creatorcontrib>Voss, Lars F.</creatorcontrib><creatorcontrib>Harrison, Sara E.</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Nikolić, Rebecca J.</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frye, Clint D.</au><au>Murphy, John W.</au><au>Shao, Qinghui</au><au>Voss, Lars F.</au><au>Harrison, Sara E.</au><au>Edgar, James H.</au><au>Nikolić, Rebecca J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hall Effect Characterization of α‐Irradiated p‐Type 4H‐SiC</atitle><jtitle>physica status solidi (b)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>258</volume><issue>3</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Most electrical characterization of radiation damage to semiconductors is conducted on full devices or on low‐doped material. However, evaluating the radiation hardness is challenging in less mature semiconductor systems where low‐doped material is unavailable and full devices are difficult to realize. Herein, temperature‐dependent Hall effect measurements are used to demonstrate α particle‐induced radiation effects in p‐type 4H‐SiC with a room temperature hole concentration of 1.8×1017cm−3. The 4H‐SiC is irradiated by α particles from a 210Po source over a fluence of 1×1011–1×1013α cm−2. Modeling the hole concentration as a function of temperature shows that α radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers. At low temperatures and increasingly higher fluences, the conduction mechanism changes from band conduction to another mechanism. p‐type 4H‐SiC is irradiated by α particles from a 210Po sealed source over a fluence of 1 × 1011–1 × 1013 α cm−2. Modeling hole concentration as a function of temperature shows that the radiation causes hole compensation through the introduction of hole traps. The radiation also induces a reduction in hole mobility due to an increase in defect‐related scattering centers.</abstract><doi>10.1002/pssb.201900781</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6370-8167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2021-03, Vol.258 (3), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_201900781
source Wiley Online Library Journals Frontfile Complete
subjects electronic transport
Hall effect
radiation damage
silicon carbide
title Hall Effect Characterization of α‐Irradiated p‐Type 4H‐SiC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hall%20Effect%20Characterization%20of%20%CE%B1%E2%80%90Irradiated%20p%E2%80%90Type%204H%E2%80%90SiC&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Frye,%20Clint%20D.&rft.date=2021-03&rft.volume=258&rft.issue=3&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201900781&rft_dat=%3Cwiley_cross%3EPSSB201900781%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true