Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy

Free‐standing gallium nitride (GaN) wafers are being increasingly used for high‐power and high‐frequency electronic devices. However, these have to be produced at low costs while maintaining high quality. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor‐phase epitax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2020-04, Vol.257 (4), p.n/a
Hauptverfasser: Yamaguchi, Akira, Oozeki, Daisuke, Kawamoto, Naoya, Takekawa, Nao, Bulsara, Mayank, Murakami, Hisashi, Kumagai, Yoshinao, Matsumoto, Koh, Koukitu, Akinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title physica status solidi (b)
container_volume 257
creator Yamaguchi, Akira
Oozeki, Daisuke
Kawamoto, Naoya
Takekawa, Nao
Bulsara, Mayank
Murakami, Hisashi
Kumagai, Yoshinao
Matsumoto, Koh
Koukitu, Akinori
description Free‐standing gallium nitride (GaN) wafers are being increasingly used for high‐power and high‐frequency electronic devices. However, these have to be produced at low costs while maintaining high quality. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor‐phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures up to 1400 °C. High growth rate and high crystal quality are achieved simultaneously using THVPE. High‐quality GaN crystals are obtained at the growth rate of more than 300 μm h−1. Crystal characteristics are confirmed via the full width at half maximum (FWHM) of the (002) plane, obtained by the X‐ray two‐crystal (XRC) method. Dark spot density (DSD) measured via cathode luminescence decreases to the level of seed substrate at growth temperatures above 1300 °C. The yellow emission band is not visible in the photoluminescence spectra of the 2 in.‐diameter sample, which is consistent with very small concentrations of carbon impurities in the crystal. In addition to the attainment of high‐purity materials, parasitic polycrystal growth around the wafer and the reactor wall is eliminated, which can improve the productivity of the THVPE, due to very little down time of the reactor. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures. A high growth rate of more than 300 μm h−1 and high crystal quality are achieved simultaneously, and there is hardly any adhesion of the parasitic polycrystal growth around the wafer and the reactor wall.
doi_str_mv 10.1002/pssb.201900564
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_201900564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201900564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-7c5bc46cdf4e4d1b834ca892ba05cd690e09222d45a1f81a8d5746b3d59d58953</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZe0LpIz_kngJVWmRKqhogWU0iR1iFEhkRyrZcQTOyEloaQVLViO9ed9bfIScMxgxAH7RhpCPODANoGJ5QAZMcRYJrdghGYBIIGI64cfkJIQXAEiYYAPyNPXNuqtoU9KZe67qno59Hzqsa_dm6RRvKXY_H7ov3mNnad7TlXcV1s5Y-oht478-PhcVBksnrevwvT8lRyXWwZ7t75A8XE9W41k0v5vejC_nUSFSIaOkUHkh48KU0krD8k1WYKp5jqAKE2uwoDnnRipkZcowNSqRcS6M0kalWokhGe12C9-E4G2Ztd69ou8zBtlWS7bVkv1q2QB6B6xdbft_2tliubz6Y78BeFBn7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy</title><source>Wiley Online Library All Journals</source><creator>Yamaguchi, Akira ; Oozeki, Daisuke ; Kawamoto, Naoya ; Takekawa, Nao ; Bulsara, Mayank ; Murakami, Hisashi ; Kumagai, Yoshinao ; Matsumoto, Koh ; Koukitu, Akinori</creator><creatorcontrib>Yamaguchi, Akira ; Oozeki, Daisuke ; Kawamoto, Naoya ; Takekawa, Nao ; Bulsara, Mayank ; Murakami, Hisashi ; Kumagai, Yoshinao ; Matsumoto, Koh ; Koukitu, Akinori</creatorcontrib><description>Free‐standing gallium nitride (GaN) wafers are being increasingly used for high‐power and high‐frequency electronic devices. However, these have to be produced at low costs while maintaining high quality. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor‐phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures up to 1400 °C. High growth rate and high crystal quality are achieved simultaneously using THVPE. High‐quality GaN crystals are obtained at the growth rate of more than 300 μm h−1. Crystal characteristics are confirmed via the full width at half maximum (FWHM) of the (002) plane, obtained by the X‐ray two‐crystal (XRC) method. Dark spot density (DSD) measured via cathode luminescence decreases to the level of seed substrate at growth temperatures above 1300 °C. The yellow emission band is not visible in the photoluminescence spectra of the 2 in.‐diameter sample, which is consistent with very small concentrations of carbon impurities in the crystal. In addition to the attainment of high‐purity materials, parasitic polycrystal growth around the wafer and the reactor wall is eliminated, which can improve the productivity of the THVPE, due to very little down time of the reactor. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures. A high growth rate of more than 300 μm h−1 and high crystal quality are achieved simultaneously, and there is hardly any adhesion of the parasitic polycrystal growth around the wafer and the reactor wall.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201900564</identifier><language>eng</language><subject>gallium nitride ; hydride vapor-phase epitaxy ; parasitic nucleation ; polycrystal growths ; quartz reactors ; trihalide vapor-phase epitaxy</subject><ispartof>physica status solidi (b), 2020-04, Vol.257 (4), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-7c5bc46cdf4e4d1b834ca892ba05cd690e09222d45a1f81a8d5746b3d59d58953</citedby><cites>FETCH-LOGICAL-c3834-7c5bc46cdf4e4d1b834ca892ba05cd690e09222d45a1f81a8d5746b3d59d58953</cites><orcidid>0000-0001-7941-0421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201900564$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201900564$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yamaguchi, Akira</creatorcontrib><creatorcontrib>Oozeki, Daisuke</creatorcontrib><creatorcontrib>Kawamoto, Naoya</creatorcontrib><creatorcontrib>Takekawa, Nao</creatorcontrib><creatorcontrib>Bulsara, Mayank</creatorcontrib><creatorcontrib>Murakami, Hisashi</creatorcontrib><creatorcontrib>Kumagai, Yoshinao</creatorcontrib><creatorcontrib>Matsumoto, Koh</creatorcontrib><creatorcontrib>Koukitu, Akinori</creatorcontrib><title>Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy</title><title>physica status solidi (b)</title><description>Free‐standing gallium nitride (GaN) wafers are being increasingly used for high‐power and high‐frequency electronic devices. However, these have to be produced at low costs while maintaining high quality. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor‐phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures up to 1400 °C. High growth rate and high crystal quality are achieved simultaneously using THVPE. High‐quality GaN crystals are obtained at the growth rate of more than 300 μm h−1. Crystal characteristics are confirmed via the full width at half maximum (FWHM) of the (002) plane, obtained by the X‐ray two‐crystal (XRC) method. Dark spot density (DSD) measured via cathode luminescence decreases to the level of seed substrate at growth temperatures above 1300 °C. The yellow emission band is not visible in the photoluminescence spectra of the 2 in.‐diameter sample, which is consistent with very small concentrations of carbon impurities in the crystal. In addition to the attainment of high‐purity materials, parasitic polycrystal growth around the wafer and the reactor wall is eliminated, which can improve the productivity of the THVPE, due to very little down time of the reactor. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures. A high growth rate of more than 300 μm h−1 and high crystal quality are achieved simultaneously, and there is hardly any adhesion of the parasitic polycrystal growth around the wafer and the reactor wall.</description><subject>gallium nitride</subject><subject>hydride vapor-phase epitaxy</subject><subject>parasitic nucleation</subject><subject>polycrystal growths</subject><subject>quartz reactors</subject><subject>trihalide vapor-phase epitaxy</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZe0LpIz_kngJVWmRKqhogWU0iR1iFEhkRyrZcQTOyEloaQVLViO9ed9bfIScMxgxAH7RhpCPODANoGJ5QAZMcRYJrdghGYBIIGI64cfkJIQXAEiYYAPyNPXNuqtoU9KZe67qno59Hzqsa_dm6RRvKXY_H7ov3mNnad7TlXcV1s5Y-oht478-PhcVBksnrevwvT8lRyXWwZ7t75A8XE9W41k0v5vejC_nUSFSIaOkUHkh48KU0krD8k1WYKp5jqAKE2uwoDnnRipkZcowNSqRcS6M0kalWokhGe12C9-E4G2Ztd69ou8zBtlWS7bVkv1q2QB6B6xdbft_2tliubz6Y78BeFBn7Q</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Yamaguchi, Akira</creator><creator>Oozeki, Daisuke</creator><creator>Kawamoto, Naoya</creator><creator>Takekawa, Nao</creator><creator>Bulsara, Mayank</creator><creator>Murakami, Hisashi</creator><creator>Kumagai, Yoshinao</creator><creator>Matsumoto, Koh</creator><creator>Koukitu, Akinori</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7941-0421</orcidid></search><sort><creationdate>202004</creationdate><title>Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy</title><author>Yamaguchi, Akira ; Oozeki, Daisuke ; Kawamoto, Naoya ; Takekawa, Nao ; Bulsara, Mayank ; Murakami, Hisashi ; Kumagai, Yoshinao ; Matsumoto, Koh ; Koukitu, Akinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-7c5bc46cdf4e4d1b834ca892ba05cd690e09222d45a1f81a8d5746b3d59d58953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>gallium nitride</topic><topic>hydride vapor-phase epitaxy</topic><topic>parasitic nucleation</topic><topic>polycrystal growths</topic><topic>quartz reactors</topic><topic>trihalide vapor-phase epitaxy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Akira</creatorcontrib><creatorcontrib>Oozeki, Daisuke</creatorcontrib><creatorcontrib>Kawamoto, Naoya</creatorcontrib><creatorcontrib>Takekawa, Nao</creatorcontrib><creatorcontrib>Bulsara, Mayank</creatorcontrib><creatorcontrib>Murakami, Hisashi</creatorcontrib><creatorcontrib>Kumagai, Yoshinao</creatorcontrib><creatorcontrib>Matsumoto, Koh</creatorcontrib><creatorcontrib>Koukitu, Akinori</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Akira</au><au>Oozeki, Daisuke</au><au>Kawamoto, Naoya</au><au>Takekawa, Nao</au><au>Bulsara, Mayank</au><au>Murakami, Hisashi</au><au>Kumagai, Yoshinao</au><au>Matsumoto, Koh</au><au>Koukitu, Akinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy</atitle><jtitle>physica status solidi (b)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>257</volume><issue>4</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Free‐standing gallium nitride (GaN) wafers are being increasingly used for high‐power and high‐frequency electronic devices. However, these have to be produced at low costs while maintaining high quality. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor‐phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures up to 1400 °C. High growth rate and high crystal quality are achieved simultaneously using THVPE. High‐quality GaN crystals are obtained at the growth rate of more than 300 μm h−1. Crystal characteristics are confirmed via the full width at half maximum (FWHM) of the (002) plane, obtained by the X‐ray two‐crystal (XRC) method. Dark spot density (DSD) measured via cathode luminescence decreases to the level of seed substrate at growth temperatures above 1300 °C. The yellow emission band is not visible in the photoluminescence spectra of the 2 in.‐diameter sample, which is consistent with very small concentrations of carbon impurities in the crystal. In addition to the attainment of high‐purity materials, parasitic polycrystal growth around the wafer and the reactor wall is eliminated, which can improve the productivity of the THVPE, due to very little down time of the reactor. With the aim of reducing the cost of manufacturing GaN substrates, trihalide vapor phase epitaxy (THVPE) is investigated to explore the effect of growth temperatures. A high growth rate of more than 300 μm h−1 and high crystal quality are achieved simultaneously, and there is hardly any adhesion of the parasitic polycrystal growth around the wafer and the reactor wall.</abstract><doi>10.1002/pssb.201900564</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7941-0421</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2020-04, Vol.257 (4), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_201900564
source Wiley Online Library All Journals
subjects gallium nitride
hydride vapor-phase epitaxy
parasitic nucleation
polycrystal growths
quartz reactors
trihalide vapor-phase epitaxy
title Growth of Highly Crystalline GaN at High Growth Rate by Trihalide Vapor‐Phase Epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Highly%20Crystalline%20GaN%20at%20High%20Growth%20Rate%20by%20Trihalide%20Vapor%E2%80%90Phase%20Epitaxy&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Yamaguchi,%20Akira&rft.date=2020-04&rft.volume=257&rft.issue=4&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201900564&rft_dat=%3Cwiley_cross%3EPSSB201900564%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true