Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions

In this study, the realization of mesoscopic Josephson junctions based on free‐standing InSb nanosheet grown by molecular‐beam epitaxy is reported. Below the critical temperature of superconducting aluminium electrodes (≈1.1 K), the high transparency of the contacts gives rise to proximity‐induced s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2019-06, Vol.256 (6), p.n/a
Hauptverfasser: Zhi, Jinhua, Kang, Ning, Li, Sen, Fan, Dingxun, Su, Feifan, Pan, Dong, Zhao, Shiping, Zhao, Jianhua, Xu, Hongqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title physica status solidi (b)
container_volume 256
creator Zhi, Jinhua
Kang, Ning
Li, Sen
Fan, Dingxun
Su, Feifan
Pan, Dong
Zhao, Shiping
Zhao, Jianhua
Xu, Hongqi
description In this study, the realization of mesoscopic Josephson junctions based on free‐standing InSb nanosheet grown by molecular‐beam epitaxy is reported. Below the critical temperature of superconducting aluminium electrodes (≈1.1 K), the high transparency of the contacts gives rise to proximity‐induced superconductivity. A dissipationless supercurrent which can be modulated by a gate voltage acting on the electron density in the nanosheet flows through the superconducting weak links. At finite bias voltage, subharmonic energy‐gap structures (SGS) originating from multiple Andreev reflections (MARs) are observed, indicating a highly transparent InSb nanosheet–superconductor interface. At last, a superconducting hybrid device with niobium electrodes is shown, suitable for further higher temperature and magnetic field transport measurements. This study reports the realization of mesoscopic Josephson junctions based on InSb nanosheet. Below the critical temperature of superconducting aluminium electrodes, a dissipationless supercurrent flows through the superconducting weak links. It can be modulated by a gate voltage. At finite bias voltage, subharmonic energy‐gap structures originating from multiple Andreev reflections are observed. At last, a superconducting hybrid device with niobium electrodes is shown for further measurements.
doi_str_mv 10.1002/pssb.201800538
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_201800538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201800538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-8925f03b367d46485e5e53e67b17bb38f7aae99839b0e2d406b986d9c01ddcf23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZe0fSJmxm9helopHUVsQgXUUxxMRFNzITkD9e1oVwRLN4i7mnrs4jF0iTBBAXHUx2okA1ACp1EdshKnARJoUj9kIpIIEjRKn7CzGdwBQKHHEVvnQUaiGEMj3vPSOr4a2b7qW-My7QPTJn6luqeqbjY-88Xzhc8vXpd_EN6Ke5-ucPwz-8D9nJ3XZRrr4yTF7vb15md8ny8e7xXy2TCqJSifaiLQGaWWm3DSb6pR2JylTFpW1UteqLMkYLY0FEm4KmTU6c6YCdK6qhRyzyWG3CpsYA9VFF5qPMmwLhGIvo9jLKH5l7ABzAL6alrb_tIunPL_-Y78Bm7JkBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions</title><source>Wiley Journals</source><creator>Zhi, Jinhua ; Kang, Ning ; Li, Sen ; Fan, Dingxun ; Su, Feifan ; Pan, Dong ; Zhao, Shiping ; Zhao, Jianhua ; Xu, Hongqi</creator><creatorcontrib>Zhi, Jinhua ; Kang, Ning ; Li, Sen ; Fan, Dingxun ; Su, Feifan ; Pan, Dong ; Zhao, Shiping ; Zhao, Jianhua ; Xu, Hongqi</creatorcontrib><description>In this study, the realization of mesoscopic Josephson junctions based on free‐standing InSb nanosheet grown by molecular‐beam epitaxy is reported. Below the critical temperature of superconducting aluminium electrodes (≈1.1 K), the high transparency of the contacts gives rise to proximity‐induced superconductivity. A dissipationless supercurrent which can be modulated by a gate voltage acting on the electron density in the nanosheet flows through the superconducting weak links. At finite bias voltage, subharmonic energy‐gap structures (SGS) originating from multiple Andreev reflections (MARs) are observed, indicating a highly transparent InSb nanosheet–superconductor interface. At last, a superconducting hybrid device with niobium electrodes is shown, suitable for further higher temperature and magnetic field transport measurements. This study reports the realization of mesoscopic Josephson junctions based on InSb nanosheet. Below the critical temperature of superconducting aluminium electrodes, a dissipationless supercurrent flows through the superconducting weak links. It can be modulated by a gate voltage. At finite bias voltage, subharmonic energy‐gap structures originating from multiple Andreev reflections are observed. At last, a superconducting hybrid device with niobium electrodes is shown for further measurements.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201800538</identifier><language>eng</language><subject>InSb nanosheets ; Josephson junctions ; multiple Andreev reflections ; supercurrent</subject><ispartof>physica status solidi (b), 2019-06, Vol.256 (6), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-8925f03b367d46485e5e53e67b17bb38f7aae99839b0e2d406b986d9c01ddcf23</citedby><cites>FETCH-LOGICAL-c3178-8925f03b367d46485e5e53e67b17bb38f7aae99839b0e2d406b986d9c01ddcf23</cites><orcidid>0000-0003-4478-8402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201800538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201800538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhi, Jinhua</creatorcontrib><creatorcontrib>Kang, Ning</creatorcontrib><creatorcontrib>Li, Sen</creatorcontrib><creatorcontrib>Fan, Dingxun</creatorcontrib><creatorcontrib>Su, Feifan</creatorcontrib><creatorcontrib>Pan, Dong</creatorcontrib><creatorcontrib>Zhao, Shiping</creatorcontrib><creatorcontrib>Zhao, Jianhua</creatorcontrib><creatorcontrib>Xu, Hongqi</creatorcontrib><title>Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions</title><title>physica status solidi (b)</title><description>In this study, the realization of mesoscopic Josephson junctions based on free‐standing InSb nanosheet grown by molecular‐beam epitaxy is reported. Below the critical temperature of superconducting aluminium electrodes (≈1.1 K), the high transparency of the contacts gives rise to proximity‐induced superconductivity. A dissipationless supercurrent which can be modulated by a gate voltage acting on the electron density in the nanosheet flows through the superconducting weak links. At finite bias voltage, subharmonic energy‐gap structures (SGS) originating from multiple Andreev reflections (MARs) are observed, indicating a highly transparent InSb nanosheet–superconductor interface. At last, a superconducting hybrid device with niobium electrodes is shown, suitable for further higher temperature and magnetic field transport measurements. This study reports the realization of mesoscopic Josephson junctions based on InSb nanosheet. Below the critical temperature of superconducting aluminium electrodes, a dissipationless supercurrent flows through the superconducting weak links. It can be modulated by a gate voltage. At finite bias voltage, subharmonic energy‐gap structures originating from multiple Andreev reflections are observed. At last, a superconducting hybrid device with niobium electrodes is shown for further measurements.</description><subject>InSb nanosheets</subject><subject>Josephson junctions</subject><subject>multiple Andreev reflections</subject><subject>supercurrent</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZe0fSJmxm9helopHUVsQgXUUxxMRFNzITkD9e1oVwRLN4i7mnrs4jF0iTBBAXHUx2okA1ACp1EdshKnARJoUj9kIpIIEjRKn7CzGdwBQKHHEVvnQUaiGEMj3vPSOr4a2b7qW-My7QPTJn6luqeqbjY-88Xzhc8vXpd_EN6Ke5-ucPwz-8D9nJ3XZRrr4yTF7vb15md8ny8e7xXy2TCqJSifaiLQGaWWm3DSb6pR2JylTFpW1UteqLMkYLY0FEm4KmTU6c6YCdK6qhRyzyWG3CpsYA9VFF5qPMmwLhGIvo9jLKH5l7ABzAL6alrb_tIunPL_-Y78Bm7JkBA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Zhi, Jinhua</creator><creator>Kang, Ning</creator><creator>Li, Sen</creator><creator>Fan, Dingxun</creator><creator>Su, Feifan</creator><creator>Pan, Dong</creator><creator>Zhao, Shiping</creator><creator>Zhao, Jianhua</creator><creator>Xu, Hongqi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4478-8402</orcidid></search><sort><creationdate>201906</creationdate><title>Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions</title><author>Zhi, Jinhua ; Kang, Ning ; Li, Sen ; Fan, Dingxun ; Su, Feifan ; Pan, Dong ; Zhao, Shiping ; Zhao, Jianhua ; Xu, Hongqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-8925f03b367d46485e5e53e67b17bb38f7aae99839b0e2d406b986d9c01ddcf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>InSb nanosheets</topic><topic>Josephson junctions</topic><topic>multiple Andreev reflections</topic><topic>supercurrent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhi, Jinhua</creatorcontrib><creatorcontrib>Kang, Ning</creatorcontrib><creatorcontrib>Li, Sen</creatorcontrib><creatorcontrib>Fan, Dingxun</creatorcontrib><creatorcontrib>Su, Feifan</creatorcontrib><creatorcontrib>Pan, Dong</creatorcontrib><creatorcontrib>Zhao, Shiping</creatorcontrib><creatorcontrib>Zhao, Jianhua</creatorcontrib><creatorcontrib>Xu, Hongqi</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhi, Jinhua</au><au>Kang, Ning</au><au>Li, Sen</au><au>Fan, Dingxun</au><au>Su, Feifan</au><au>Pan, Dong</au><au>Zhao, Shiping</au><au>Zhao, Jianhua</au><au>Xu, Hongqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions</atitle><jtitle>physica status solidi (b)</jtitle><date>2019-06</date><risdate>2019</risdate><volume>256</volume><issue>6</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>In this study, the realization of mesoscopic Josephson junctions based on free‐standing InSb nanosheet grown by molecular‐beam epitaxy is reported. Below the critical temperature of superconducting aluminium electrodes (≈1.1 K), the high transparency of the contacts gives rise to proximity‐induced superconductivity. A dissipationless supercurrent which can be modulated by a gate voltage acting on the electron density in the nanosheet flows through the superconducting weak links. At finite bias voltage, subharmonic energy‐gap structures (SGS) originating from multiple Andreev reflections (MARs) are observed, indicating a highly transparent InSb nanosheet–superconductor interface. At last, a superconducting hybrid device with niobium electrodes is shown, suitable for further higher temperature and magnetic field transport measurements. This study reports the realization of mesoscopic Josephson junctions based on InSb nanosheet. Below the critical temperature of superconducting aluminium electrodes, a dissipationless supercurrent flows through the superconducting weak links. It can be modulated by a gate voltage. At finite bias voltage, subharmonic energy‐gap structures originating from multiple Andreev reflections are observed. At last, a superconducting hybrid device with niobium electrodes is shown for further measurements.</abstract><doi>10.1002/pssb.201800538</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4478-8402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2019-06, Vol.256 (6), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_201800538
source Wiley Journals
subjects InSb nanosheets
Josephson junctions
multiple Andreev reflections
supercurrent
title Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercurrent%20and%20Multiple%20Andreev%20Reflections%20in%20InSb%20Nanosheet%20SNS%20Junctions&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Zhi,%20Jinhua&rft.date=2019-06&rft.volume=256&rft.issue=6&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201800538&rft_dat=%3Cwiley_cross%3EPSSB201800538%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true