Electronic Properties of Air‐Sensitive Nanomaterials Probed with Microwave Impedance Measurements

Characterization of electronic properties of novel materials is of great importance for exploratory materials development and also for the discovery of new correlated phases. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2018-12, Vol.255 (12), p.n/a
Hauptverfasser: Márkus, Bence G., Csősz, Gábor, Sági, Olivér, Gyüre‐Garami, Balázs, Lloret, Vicent, Wild, Stefan, Abellán, Gonzalo, Nemes, Norbert M., Klupp, Gyöngyi, Kamarás, Katalin, Hirsch, Andreas, Hauke, Frank, Simon, Ferenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title physica status solidi (b)
container_volume 255
creator Márkus, Bence G.
Csősz, Gábor
Sági, Olivér
Gyüre‐Garami, Balázs
Lloret, Vicent
Wild, Stefan
Abellán, Gonzalo
Nemes, Norbert M.
Klupp, Gyöngyi
Kamarás, Katalin
Hirsch, Andreas
Hauke, Frank
Simon, Ferenc
description Characterization of electronic properties of novel materials is of great importance for exploratory materials development and also for the discovery of new correlated phases. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. We present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in carbon nanotubes upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of various alkali atom doped phases of black phosphorus. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. The authors present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in SWCNTs upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of KP8, a potassium doped phase of black phosphorus.
doi_str_mv 10.1002/pssb.201800250
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_201800250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201800250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-45336f3bd52c537d2e0e59b96ee6cb2ea6bc367949e55003fd82254005ba6b613</originalsourceid><addsrcrecordid>eNqFkM9KAzEQh4MoWKtXz3mBrZOk2W2OtVRbaLWwel6S7CxGun9IVktvPoLP6JOYUtGjp2GY7xt-_Ai5ZjBiAPymC8GMOLBJXCSckAGTnCVCSXZKBiAySJjK-Dm5COEVADIm2IDY-RZt79vGWbrxbYe-dxhoW9Gp818fnzk2wfXuHemDbtpa9-id3oYDa7CkO9e_0LWzvt3pyCzrDkvdWKRr1OHNY41NHy7JWRUdvPqZQ_J8N3-aLZLV4_1yNl0lVsiYbiyFSCthSsmtFFnJEVAqo1LE1BqOOjVWpJkaK5QSQFTlhHM5BpAmnlImhmR0_BvjhOCxKjrvau33BYPiUFFxqKj4rSgK6ijs3Bb3_9DFJs9v_9xvDWBtmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic Properties of Air‐Sensitive Nanomaterials Probed with Microwave Impedance Measurements</title><source>Access via Wiley Online Library</source><creator>Márkus, Bence G. ; Csősz, Gábor ; Sági, Olivér ; Gyüre‐Garami, Balázs ; Lloret, Vicent ; Wild, Stefan ; Abellán, Gonzalo ; Nemes, Norbert M. ; Klupp, Gyöngyi ; Kamarás, Katalin ; Hirsch, Andreas ; Hauke, Frank ; Simon, Ferenc</creator><creatorcontrib>Márkus, Bence G. ; Csősz, Gábor ; Sági, Olivér ; Gyüre‐Garami, Balázs ; Lloret, Vicent ; Wild, Stefan ; Abellán, Gonzalo ; Nemes, Norbert M. ; Klupp, Gyöngyi ; Kamarás, Katalin ; Hirsch, Andreas ; Hauke, Frank ; Simon, Ferenc</creatorcontrib><description>Characterization of electronic properties of novel materials is of great importance for exploratory materials development and also for the discovery of new correlated phases. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. We present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in carbon nanotubes upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of various alkali atom doped phases of black phosphorus. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. The authors present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in SWCNTs upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of KP8, a potassium doped phase of black phosphorus.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201800250</identifier><language>eng</language><subject>black phosphorus ; carbon nanotubes ; fullerides ; intercalation ; microwave conductivity</subject><ispartof>physica status solidi (b), 2018-12, Vol.255 (12), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-45336f3bd52c537d2e0e59b96ee6cb2ea6bc367949e55003fd82254005ba6b613</citedby><cites>FETCH-LOGICAL-c3570-45336f3bd52c537d2e0e59b96ee6cb2ea6bc367949e55003fd82254005ba6b613</cites><orcidid>0000-0003-1472-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201800250$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201800250$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Márkus, Bence G.</creatorcontrib><creatorcontrib>Csősz, Gábor</creatorcontrib><creatorcontrib>Sági, Olivér</creatorcontrib><creatorcontrib>Gyüre‐Garami, Balázs</creatorcontrib><creatorcontrib>Lloret, Vicent</creatorcontrib><creatorcontrib>Wild, Stefan</creatorcontrib><creatorcontrib>Abellán, Gonzalo</creatorcontrib><creatorcontrib>Nemes, Norbert M.</creatorcontrib><creatorcontrib>Klupp, Gyöngyi</creatorcontrib><creatorcontrib>Kamarás, Katalin</creatorcontrib><creatorcontrib>Hirsch, Andreas</creatorcontrib><creatorcontrib>Hauke, Frank</creatorcontrib><creatorcontrib>Simon, Ferenc</creatorcontrib><title>Electronic Properties of Air‐Sensitive Nanomaterials Probed with Microwave Impedance Measurements</title><title>physica status solidi (b)</title><description>Characterization of electronic properties of novel materials is of great importance for exploratory materials development and also for the discovery of new correlated phases. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. We present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in carbon nanotubes upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of various alkali atom doped phases of black phosphorus. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. The authors present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in SWCNTs upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of KP8, a potassium doped phase of black phosphorus.</description><subject>black phosphorus</subject><subject>carbon nanotubes</subject><subject>fullerides</subject><subject>intercalation</subject><subject>microwave conductivity</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQh4MoWKtXz3mBrZOk2W2OtVRbaLWwel6S7CxGun9IVktvPoLP6JOYUtGjp2GY7xt-_Ai5ZjBiAPymC8GMOLBJXCSckAGTnCVCSXZKBiAySJjK-Dm5COEVADIm2IDY-RZt79vGWbrxbYe-dxhoW9Gp818fnzk2wfXuHemDbtpa9-id3oYDa7CkO9e_0LWzvt3pyCzrDkvdWKRr1OHNY41NHy7JWRUdvPqZQ_J8N3-aLZLV4_1yNl0lVsiYbiyFSCthSsmtFFnJEVAqo1LE1BqOOjVWpJkaK5QSQFTlhHM5BpAmnlImhmR0_BvjhOCxKjrvau33BYPiUFFxqKj4rSgK6ijs3Bb3_9DFJs9v_9xvDWBtmQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Márkus, Bence G.</creator><creator>Csősz, Gábor</creator><creator>Sági, Olivér</creator><creator>Gyüre‐Garami, Balázs</creator><creator>Lloret, Vicent</creator><creator>Wild, Stefan</creator><creator>Abellán, Gonzalo</creator><creator>Nemes, Norbert M.</creator><creator>Klupp, Gyöngyi</creator><creator>Kamarás, Katalin</creator><creator>Hirsch, Andreas</creator><creator>Hauke, Frank</creator><creator>Simon, Ferenc</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1472-0482</orcidid></search><sort><creationdate>201812</creationdate><title>Electronic Properties of Air‐Sensitive Nanomaterials Probed with Microwave Impedance Measurements</title><author>Márkus, Bence G. ; Csősz, Gábor ; Sági, Olivér ; Gyüre‐Garami, Balázs ; Lloret, Vicent ; Wild, Stefan ; Abellán, Gonzalo ; Nemes, Norbert M. ; Klupp, Gyöngyi ; Kamarás, Katalin ; Hirsch, Andreas ; Hauke, Frank ; Simon, Ferenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-45336f3bd52c537d2e0e59b96ee6cb2ea6bc367949e55003fd82254005ba6b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>black phosphorus</topic><topic>carbon nanotubes</topic><topic>fullerides</topic><topic>intercalation</topic><topic>microwave conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Márkus, Bence G.</creatorcontrib><creatorcontrib>Csősz, Gábor</creatorcontrib><creatorcontrib>Sági, Olivér</creatorcontrib><creatorcontrib>Gyüre‐Garami, Balázs</creatorcontrib><creatorcontrib>Lloret, Vicent</creatorcontrib><creatorcontrib>Wild, Stefan</creatorcontrib><creatorcontrib>Abellán, Gonzalo</creatorcontrib><creatorcontrib>Nemes, Norbert M.</creatorcontrib><creatorcontrib>Klupp, Gyöngyi</creatorcontrib><creatorcontrib>Kamarás, Katalin</creatorcontrib><creatorcontrib>Hirsch, Andreas</creatorcontrib><creatorcontrib>Hauke, Frank</creatorcontrib><creatorcontrib>Simon, Ferenc</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Márkus, Bence G.</au><au>Csősz, Gábor</au><au>Sági, Olivér</au><au>Gyüre‐Garami, Balázs</au><au>Lloret, Vicent</au><au>Wild, Stefan</au><au>Abellán, Gonzalo</au><au>Nemes, Norbert M.</au><au>Klupp, Gyöngyi</au><au>Kamarás, Katalin</au><au>Hirsch, Andreas</au><au>Hauke, Frank</au><au>Simon, Ferenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Properties of Air‐Sensitive Nanomaterials Probed with Microwave Impedance Measurements</atitle><jtitle>physica status solidi (b)</jtitle><date>2018-12</date><risdate>2018</risdate><volume>255</volume><issue>12</issue><epage>n/a</epage><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Characterization of electronic properties of novel materials is of great importance for exploratory materials development and also for the discovery of new correlated phases. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. We present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in carbon nanotubes upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of various alkali atom doped phases of black phosphorus. As several novel compounds are available in powder form only, contactless methods, which also work on air‐sensitive samples, are highly desired. The authors present that the microwave cavity perturbation technique is a versatile tool to study conductivity in such systems. The examples include studies on semiconducting–metallic crossover in SWCNTs upon alkali doping, study of vortex motion in the K3C60 superconductor, and the characterization of KP8, a potassium doped phase of black phosphorus.</abstract><doi>10.1002/pssb.201800250</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1472-0482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2018-12, Vol.255 (12), p.n/a
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_201800250
source Access via Wiley Online Library
subjects black phosphorus
carbon nanotubes
fullerides
intercalation
microwave conductivity
title Electronic Properties of Air‐Sensitive Nanomaterials Probed with Microwave Impedance Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Properties%20of%20Air%E2%80%90Sensitive%20Nanomaterials%20Probed%20with%20Microwave%20Impedance%20Measurements&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=M%C3%A1rkus,%20Bence%20G.&rft.date=2018-12&rft.volume=255&rft.issue=12&rft.epage=n/a&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201800250&rft_dat=%3Cwiley_cross%3EPSSB201800250%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true