Stimulated emission from ZnO nanorods
By means of time resolved spectroscopy we compare two samples of ZnO nanorods with respect to their suitability as stimulated emitters. In the case of narrow nanorods their wave guiding quality causes a suppression of exciton–exciton scattering whereas no laser emission is detectable. Unlike their n...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. B. Basic research 2006-03, Vol.243 (4), p.853-857 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 857 |
---|---|
container_issue | 4 |
container_start_page | 853 |
container_title | Physica status solidi. B. Basic research |
container_volume | 243 |
creator | Hauschild, R. Lange, H. Priller, H. Klingshirn, C. Kling, R. Waag, A. Fan, H. J. Zacharias, M. Kalt, H. |
description | By means of time resolved spectroscopy we compare two samples of ZnO nanorods with respect to their suitability as stimulated emitters. In the case of narrow nanorods their wave guiding quality causes a suppression of exciton–exciton scattering whereas no laser emission is detectable. Unlike their narrow counterparts, wide nanorods not only benefit from a larger overlap of the guided mode with the gain medium but a variation in VLS growth results in gold nanoparticles being present at the bottom of nanorods. Consequently, laser emission from single wide rods is evidenced up to 150 K. In addition to experimental studies we carry out 3D numerical simulations of the electric field distribution to evaluate the influence of gold nanoparticles at the nanorod/substrate interface. This finite element analysis confirms that gold leads to an enhancement of confinement within the resonator. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200564718 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_200564718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_TFZT1RMV_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4238-110b42b873de8edd18b75483621a26a9b23b6ef5f3a2d2ddb97dd50309edceb63</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EEqWwMmfpmPKeHcfOCBUtoEIRLSB1sezYkQL5qOwi6L-nVVBhY7rLPffqEHKOMEQAerEKwQwpAE8TgfKA9JBTjFnG8ZD0gAmIMRP0mJyE8AYAAhn2yGC-LuuPSq-djVxdhlC2TVT4to6WzSxqdNP61oZTclToKrizn-yT5_H1YnQTT2eT29HlNM4TymSMCCahRgpmnXTWojSCJ5KlFDVNdWYoM6kreME0tdRakwlrOTDInM2dSVmfDLvd3LcheFeolS9r7TcKQe0k1U5S7SW3wKADVjrkuiq8bvIy_FKCC8mQb3tZ1_ssK7f5Z1U9zudXfz_iji3D2n3tWe3fVSqY4Or1YaIW4-UCn-5f1B37Bmt6ckY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stimulated emission from ZnO nanorods</title><source>Wiley Online Library All Journals</source><creator>Hauschild, R. ; Lange, H. ; Priller, H. ; Klingshirn, C. ; Kling, R. ; Waag, A. ; Fan, H. J. ; Zacharias, M. ; Kalt, H.</creator><creatorcontrib>Hauschild, R. ; Lange, H. ; Priller, H. ; Klingshirn, C. ; Kling, R. ; Waag, A. ; Fan, H. J. ; Zacharias, M. ; Kalt, H.</creatorcontrib><description>By means of time resolved spectroscopy we compare two samples of ZnO nanorods with respect to their suitability as stimulated emitters. In the case of narrow nanorods their wave guiding quality causes a suppression of exciton–exciton scattering whereas no laser emission is detectable. Unlike their narrow counterparts, wide nanorods not only benefit from a larger overlap of the guided mode with the gain medium but a variation in VLS growth results in gold nanoparticles being present at the bottom of nanorods. Consequently, laser emission from single wide rods is evidenced up to 150 K. In addition to experimental studies we carry out 3D numerical simulations of the electric field distribution to evaluate the influence of gold nanoparticles at the nanorod/substrate interface. This finite element analysis confirms that gold leads to an enhancement of confinement within the resonator. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200564718</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>78.45.+h ; 78.47.+p ; 78.55.Et ; 78.67.-n ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Laser materials ; Nanocrystals and nanoparticles ; Optical materials ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Optics ; Physics</subject><ispartof>Physica status solidi. B. Basic research, 2006-03, Vol.243 (4), p.853-857</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4238-110b42b873de8edd18b75483621a26a9b23b6ef5f3a2d2ddb97dd50309edceb63</citedby><cites>FETCH-LOGICAL-c4238-110b42b873de8edd18b75483621a26a9b23b6ef5f3a2d2ddb97dd50309edceb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200564718$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200564718$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,1418,23935,23936,25145,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17578315$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauschild, R.</creatorcontrib><creatorcontrib>Lange, H.</creatorcontrib><creatorcontrib>Priller, H.</creatorcontrib><creatorcontrib>Klingshirn, C.</creatorcontrib><creatorcontrib>Kling, R.</creatorcontrib><creatorcontrib>Waag, A.</creatorcontrib><creatorcontrib>Fan, H. J.</creatorcontrib><creatorcontrib>Zacharias, M.</creatorcontrib><creatorcontrib>Kalt, H.</creatorcontrib><title>Stimulated emission from ZnO nanorods</title><title>Physica status solidi. B. Basic research</title><addtitle>phys. stat. sol. (b)</addtitle><description>By means of time resolved spectroscopy we compare two samples of ZnO nanorods with respect to their suitability as stimulated emitters. In the case of narrow nanorods their wave guiding quality causes a suppression of exciton–exciton scattering whereas no laser emission is detectable. Unlike their narrow counterparts, wide nanorods not only benefit from a larger overlap of the guided mode with the gain medium but a variation in VLS growth results in gold nanoparticles being present at the bottom of nanorods. Consequently, laser emission from single wide rods is evidenced up to 150 K. In addition to experimental studies we carry out 3D numerical simulations of the electric field distribution to evaluate the influence of gold nanoparticles at the nanorod/substrate interface. This finite element analysis confirms that gold leads to an enhancement of confinement within the resonator. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>78.45.+h</subject><subject>78.47.+p</subject><subject>78.55.Et</subject><subject>78.67.-n</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laser materials</subject><subject>Nanocrystals and nanoparticles</subject><subject>Optical materials</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Optics</subject><subject>Physics</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EEqWwMmfpmPKeHcfOCBUtoEIRLSB1sezYkQL5qOwi6L-nVVBhY7rLPffqEHKOMEQAerEKwQwpAE8TgfKA9JBTjFnG8ZD0gAmIMRP0mJyE8AYAAhn2yGC-LuuPSq-djVxdhlC2TVT4to6WzSxqdNP61oZTclToKrizn-yT5_H1YnQTT2eT29HlNM4TymSMCCahRgpmnXTWojSCJ5KlFDVNdWYoM6kreME0tdRakwlrOTDInM2dSVmfDLvd3LcheFeolS9r7TcKQe0k1U5S7SW3wKADVjrkuiq8bvIy_FKCC8mQb3tZ1_ssK7f5Z1U9zudXfz_iji3D2n3tWe3fVSqY4Or1YaIW4-UCn-5f1B37Bmt6ckY</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Hauschild, R.</creator><creator>Lange, H.</creator><creator>Priller, H.</creator><creator>Klingshirn, C.</creator><creator>Kling, R.</creator><creator>Waag, A.</creator><creator>Fan, H. J.</creator><creator>Zacharias, M.</creator><creator>Kalt, H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200603</creationdate><title>Stimulated emission from ZnO nanorods</title><author>Hauschild, R. ; Lange, H. ; Priller, H. ; Klingshirn, C. ; Kling, R. ; Waag, A. ; Fan, H. J. ; Zacharias, M. ; Kalt, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4238-110b42b873de8edd18b75483621a26a9b23b6ef5f3a2d2ddb97dd50309edceb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>78.45.+h</topic><topic>78.47.+p</topic><topic>78.55.Et</topic><topic>78.67.-n</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laser materials</topic><topic>Nanocrystals and nanoparticles</topic><topic>Optical materials</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauschild, R.</creatorcontrib><creatorcontrib>Lange, H.</creatorcontrib><creatorcontrib>Priller, H.</creatorcontrib><creatorcontrib>Klingshirn, C.</creatorcontrib><creatorcontrib>Kling, R.</creatorcontrib><creatorcontrib>Waag, A.</creatorcontrib><creatorcontrib>Fan, H. J.</creatorcontrib><creatorcontrib>Zacharias, M.</creatorcontrib><creatorcontrib>Kalt, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physica status solidi. B. Basic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauschild, R.</au><au>Lange, H.</au><au>Priller, H.</au><au>Klingshirn, C.</au><au>Kling, R.</au><au>Waag, A.</au><au>Fan, H. J.</au><au>Zacharias, M.</au><au>Kalt, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulated emission from ZnO nanorods</atitle><jtitle>Physica status solidi. B. Basic research</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2006-03</date><risdate>2006</risdate><volume>243</volume><issue>4</issue><spage>853</spage><epage>857</epage><pages>853-857</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>By means of time resolved spectroscopy we compare two samples of ZnO nanorods with respect to their suitability as stimulated emitters. In the case of narrow nanorods their wave guiding quality causes a suppression of exciton–exciton scattering whereas no laser emission is detectable. Unlike their narrow counterparts, wide nanorods not only benefit from a larger overlap of the guided mode with the gain medium but a variation in VLS growth results in gold nanoparticles being present at the bottom of nanorods. Consequently, laser emission from single wide rods is evidenced up to 150 K. In addition to experimental studies we carry out 3D numerical simulations of the electric field distribution to evaluate the influence of gold nanoparticles at the nanorod/substrate interface. This finite element analysis confirms that gold leads to an enhancement of confinement within the resonator. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200564718</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica status solidi. B. Basic research, 2006-03, Vol.243 (4), p.853-857 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssb_200564718 |
source | Wiley Online Library All Journals |
subjects | 78.45.+h 78.47.+p 78.55.Et 78.67.-n Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology Fundamental areas of phenomenology (including applications) Laser materials Nanocrystals and nanoparticles Optical materials Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Optics Physics |
title | Stimulated emission from ZnO nanorods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulated%20emission%20from%20ZnO%20nanorods&rft.jtitle=Physica%20status%20solidi.%20B.%20Basic%20research&rft.au=Hauschild,%20R.&rft.date=2006-03&rft.volume=243&rft.issue=4&rft.spage=853&rft.epage=857&rft.pages=853-857&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200564718&rft_dat=%3Cistex_cross%3Eark_67375_WNG_TFZT1RMV_J%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |