Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance
Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport eff...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | |
creator | Dai, Dinghe Siebenkotten, Dario Šobáň, Zbyněk Girnghuber, Anna Krzysteczko, Patryk Hoehl, Arne Wunderlich, Jörg Kästner, Bernd |
description | Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii. |
doi_str_mv | 10.1002/pssa.202400736 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202400736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssa_202400736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-ab8257991ba481455b57604ce7de070883cf18b93e5245afa9590b60323000703</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuWxZe0fSBk7dh7sqkIBqbQVlHXkuGPVKI0j20XqX_DJJFB1NXcx9-jqEHLHYMwA-H0Xghpz4AIgT7MzMmJFxpMsZeX5KQNckqsQvgCEFDkbkZ_V1kWn995jG-lCtS5o1x2obWncIl2g8nRmsdk80Amdul2nvIr2G-lH3G8O1Bn6aI3Bv_Ykup3VdOa8RvpmtT-y1rYLA_Adm77rerKj6y1aT5ddtFo1dIXeOL9TrcYbcmFUE_D2eK_J5-xpPX1J5svn1-lknmjGRUxUXXCZlyWrlSiYkLKWeQZCY75ByKEoUm1YUZcpSi6kMqqUJdQZpLx30D-k12T8zx1mBo-m6rzdKX-oGFSDz2rwWZ18pr8hhWog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Dinghe ; Siebenkotten, Dario ; Šobáň, Zbyněk ; Girnghuber, Anna ; Krzysteczko, Patryk ; Hoehl, Arne ; Wunderlich, Jörg ; Kästner, Bernd</creator><creatorcontrib>Dai, Dinghe ; Siebenkotten, Dario ; Šobáň, Zbyněk ; Girnghuber, Anna ; Krzysteczko, Patryk ; Hoehl, Arne ; Wunderlich, Jörg ; Kästner, Bernd</creatorcontrib><description>Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202400736</identifier><language>eng</language><ispartof>Physica status solidi. A, Applications and materials science, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-ab8257991ba481455b57604ce7de070883cf18b93e5245afa9590b60323000703</cites><orcidid>0000-0002-5118-7368 ; 0009-0000-4130-595X ; 0000-0002-8751-931X ; 0000-0003-2631-828X ; 0000-0002-1017-2354 ; 0000-0003-0813-7514 ; 0000-0002-6575-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Dai, Dinghe</creatorcontrib><creatorcontrib>Siebenkotten, Dario</creatorcontrib><creatorcontrib>Šobáň, Zbyněk</creatorcontrib><creatorcontrib>Girnghuber, Anna</creatorcontrib><creatorcontrib>Krzysteczko, Patryk</creatorcontrib><creatorcontrib>Hoehl, Arne</creatorcontrib><creatorcontrib>Wunderlich, Jörg</creatorcontrib><creatorcontrib>Kästner, Bernd</creatorcontrib><title>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</title><title>Physica status solidi. A, Applications and materials science</title><description>Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.</description><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuWxZe0fSBk7dh7sqkIBqbQVlHXkuGPVKI0j20XqX_DJJFB1NXcx9-jqEHLHYMwA-H0Xghpz4AIgT7MzMmJFxpMsZeX5KQNckqsQvgCEFDkbkZ_V1kWn995jG-lCtS5o1x2obWncIl2g8nRmsdk80Amdul2nvIr2G-lH3G8O1Bn6aI3Bv_Ykup3VdOa8RvpmtT-y1rYLA_Adm77rerKj6y1aT5ddtFo1dIXeOL9TrcYbcmFUE_D2eK_J5-xpPX1J5svn1-lknmjGRUxUXXCZlyWrlSiYkLKWeQZCY75ByKEoUm1YUZcpSi6kMqqUJdQZpLx30D-k12T8zx1mBo-m6rzdKX-oGFSDz2rwWZ18pr8hhWog</recordid><startdate>20241222</startdate><enddate>20241222</enddate><creator>Dai, Dinghe</creator><creator>Siebenkotten, Dario</creator><creator>Šobáň, Zbyněk</creator><creator>Girnghuber, Anna</creator><creator>Krzysteczko, Patryk</creator><creator>Hoehl, Arne</creator><creator>Wunderlich, Jörg</creator><creator>Kästner, Bernd</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5118-7368</orcidid><orcidid>https://orcid.org/0009-0000-4130-595X</orcidid><orcidid>https://orcid.org/0000-0002-8751-931X</orcidid><orcidid>https://orcid.org/0000-0003-2631-828X</orcidid><orcidid>https://orcid.org/0000-0002-1017-2354</orcidid><orcidid>https://orcid.org/0000-0003-0813-7514</orcidid><orcidid>https://orcid.org/0000-0002-6575-6621</orcidid></search><sort><creationdate>20241222</creationdate><title>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</title><author>Dai, Dinghe ; Siebenkotten, Dario ; Šobáň, Zbyněk ; Girnghuber, Anna ; Krzysteczko, Patryk ; Hoehl, Arne ; Wunderlich, Jörg ; Kästner, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-ab8257991ba481455b57604ce7de070883cf18b93e5245afa9590b60323000703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Dinghe</creatorcontrib><creatorcontrib>Siebenkotten, Dario</creatorcontrib><creatorcontrib>Šobáň, Zbyněk</creatorcontrib><creatorcontrib>Girnghuber, Anna</creatorcontrib><creatorcontrib>Krzysteczko, Patryk</creatorcontrib><creatorcontrib>Hoehl, Arne</creatorcontrib><creatorcontrib>Wunderlich, Jörg</creatorcontrib><creatorcontrib>Kästner, Bernd</creatorcontrib><collection>CrossRef</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Dinghe</au><au>Siebenkotten, Dario</au><au>Šobáň, Zbyněk</au><au>Girnghuber, Anna</au><au>Krzysteczko, Patryk</au><au>Hoehl, Arne</au><au>Wunderlich, Jörg</au><au>Kästner, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-12-22</date><risdate>2024</risdate><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.</abstract><doi>10.1002/pssa.202400736</doi><orcidid>https://orcid.org/0000-0002-5118-7368</orcidid><orcidid>https://orcid.org/0009-0000-4130-595X</orcidid><orcidid>https://orcid.org/0000-0002-8751-931X</orcidid><orcidid>https://orcid.org/0000-0003-2631-828X</orcidid><orcidid>https://orcid.org/0000-0002-1017-2354</orcidid><orcidid>https://orcid.org/0000-0003-0813-7514</orcidid><orcidid>https://orcid.org/0000-0002-6575-6621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-12 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssa_202400736 |
source | Wiley Online Library Journals Frontfile Complete |
title | Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocurrent%20Nanoscopy%20in%20the%20Near%20Field:%20A%20Comparative%20Study%20of%20Different%20Atomic%20Force%20Microscopy%20Tips%20in%20Relation%20to%20Their%20Optical%20Performance&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Dai,%20Dinghe&rft.date=2024-12-22&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202400736&rft_dat=%3Ccrossref%3E10_1002_pssa_202400736%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |