Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance

Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-12
Hauptverfasser: Dai, Dinghe, Siebenkotten, Dario, Šobáň, Zbyněk, Girnghuber, Anna, Krzysteczko, Patryk, Hoehl, Arne, Wunderlich, Jörg, Kästner, Bernd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume
creator Dai, Dinghe
Siebenkotten, Dario
Šobáň, Zbyněk
Girnghuber, Anna
Krzysteczko, Patryk
Hoehl, Arne
Wunderlich, Jörg
Kästner, Bernd
description Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.
doi_str_mv 10.1002/pssa.202400736
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202400736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssa_202400736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-ab8257991ba481455b57604ce7de070883cf18b93e5245afa9590b60323000703</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuWxZe0fSBk7dh7sqkIBqbQVlHXkuGPVKI0j20XqX_DJJFB1NXcx9-jqEHLHYMwA-H0Xghpz4AIgT7MzMmJFxpMsZeX5KQNckqsQvgCEFDkbkZ_V1kWn995jG-lCtS5o1x2obWncIl2g8nRmsdk80Amdul2nvIr2G-lH3G8O1Bn6aI3Bv_Ykup3VdOa8RvpmtT-y1rYLA_Adm77rerKj6y1aT5ddtFo1dIXeOL9TrcYbcmFUE_D2eK_J5-xpPX1J5svn1-lknmjGRUxUXXCZlyWrlSiYkLKWeQZCY75ByKEoUm1YUZcpSi6kMqqUJdQZpLx30D-k12T8zx1mBo-m6rzdKX-oGFSDz2rwWZ18pr8hhWog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Dinghe ; Siebenkotten, Dario ; Šobáň, Zbyněk ; Girnghuber, Anna ; Krzysteczko, Patryk ; Hoehl, Arne ; Wunderlich, Jörg ; Kästner, Bernd</creator><creatorcontrib>Dai, Dinghe ; Siebenkotten, Dario ; Šobáň, Zbyněk ; Girnghuber, Anna ; Krzysteczko, Patryk ; Hoehl, Arne ; Wunderlich, Jörg ; Kästner, Bernd</creatorcontrib><description>Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202400736</identifier><language>eng</language><ispartof>Physica status solidi. A, Applications and materials science, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-ab8257991ba481455b57604ce7de070883cf18b93e5245afa9590b60323000703</cites><orcidid>0000-0002-5118-7368 ; 0009-0000-4130-595X ; 0000-0002-8751-931X ; 0000-0003-2631-828X ; 0000-0002-1017-2354 ; 0000-0003-0813-7514 ; 0000-0002-6575-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Dai, Dinghe</creatorcontrib><creatorcontrib>Siebenkotten, Dario</creatorcontrib><creatorcontrib>Šobáň, Zbyněk</creatorcontrib><creatorcontrib>Girnghuber, Anna</creatorcontrib><creatorcontrib>Krzysteczko, Patryk</creatorcontrib><creatorcontrib>Hoehl, Arne</creatorcontrib><creatorcontrib>Wunderlich, Jörg</creatorcontrib><creatorcontrib>Kästner, Bernd</creatorcontrib><title>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</title><title>Physica status solidi. A, Applications and materials science</title><description>Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.</description><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuWxZe0fSBk7dh7sqkIBqbQVlHXkuGPVKI0j20XqX_DJJFB1NXcx9-jqEHLHYMwA-H0Xghpz4AIgT7MzMmJFxpMsZeX5KQNckqsQvgCEFDkbkZ_V1kWn995jG-lCtS5o1x2obWncIl2g8nRmsdk80Amdul2nvIr2G-lH3G8O1Bn6aI3Bv_Ykup3VdOa8RvpmtT-y1rYLA_Adm77rerKj6y1aT5ddtFo1dIXeOL9TrcYbcmFUE_D2eK_J5-xpPX1J5svn1-lknmjGRUxUXXCZlyWrlSiYkLKWeQZCY75ByKEoUm1YUZcpSi6kMqqUJdQZpLx30D-k12T8zx1mBo-m6rzdKX-oGFSDz2rwWZ18pr8hhWog</recordid><startdate>20241222</startdate><enddate>20241222</enddate><creator>Dai, Dinghe</creator><creator>Siebenkotten, Dario</creator><creator>Šobáň, Zbyněk</creator><creator>Girnghuber, Anna</creator><creator>Krzysteczko, Patryk</creator><creator>Hoehl, Arne</creator><creator>Wunderlich, Jörg</creator><creator>Kästner, Bernd</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5118-7368</orcidid><orcidid>https://orcid.org/0009-0000-4130-595X</orcidid><orcidid>https://orcid.org/0000-0002-8751-931X</orcidid><orcidid>https://orcid.org/0000-0003-2631-828X</orcidid><orcidid>https://orcid.org/0000-0002-1017-2354</orcidid><orcidid>https://orcid.org/0000-0003-0813-7514</orcidid><orcidid>https://orcid.org/0000-0002-6575-6621</orcidid></search><sort><creationdate>20241222</creationdate><title>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</title><author>Dai, Dinghe ; Siebenkotten, Dario ; Šobáň, Zbyněk ; Girnghuber, Anna ; Krzysteczko, Patryk ; Hoehl, Arne ; Wunderlich, Jörg ; Kästner, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-ab8257991ba481455b57604ce7de070883cf18b93e5245afa9590b60323000703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Dinghe</creatorcontrib><creatorcontrib>Siebenkotten, Dario</creatorcontrib><creatorcontrib>Šobáň, Zbyněk</creatorcontrib><creatorcontrib>Girnghuber, Anna</creatorcontrib><creatorcontrib>Krzysteczko, Patryk</creatorcontrib><creatorcontrib>Hoehl, Arne</creatorcontrib><creatorcontrib>Wunderlich, Jörg</creatorcontrib><creatorcontrib>Kästner, Bernd</creatorcontrib><collection>CrossRef</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Dinghe</au><au>Siebenkotten, Dario</au><au>Šobáň, Zbyněk</au><au>Girnghuber, Anna</au><au>Krzysteczko, Patryk</au><au>Hoehl, Arne</au><au>Wunderlich, Jörg</au><au>Kästner, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-12-22</date><risdate>2024</risdate><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Photocurrent is a critical observable in a wide range of physical processes across different length scales, serving as a valuable tool for the characterization of semiconductors or two‐dimensional materials. Recently, photocurrent mapping, particularly when combined with magnetothermal transport effects, such as the anomalous Nernst effect (ANE), has been used to image magnetic domains and domain walls. To gain access to photocurrents on the nanoscale, this effect is combined with infrared scattering‐type scanning near‐field optical microscopy, in which strong field enhancement is created at the apex of an atomic force microscopy (AFM) tip, which serves as the confined illumination source creating localized temperature gradients through light absorption in the sample, which can be exploited for ANE detection. Herein, ANE photocurrents generated in a cobalt–iron–boron channel and the optical scattering are compared between various AFM tips, revealing significantly differing behavior for different tips. To gain insight into the origin of these differences, the measurements are further compared to finite element method simulations of tips with varied tip apex radii.</abstract><doi>10.1002/pssa.202400736</doi><orcidid>https://orcid.org/0000-0002-5118-7368</orcidid><orcidid>https://orcid.org/0009-0000-4130-595X</orcidid><orcidid>https://orcid.org/0000-0002-8751-931X</orcidid><orcidid>https://orcid.org/0000-0003-2631-828X</orcidid><orcidid>https://orcid.org/0000-0002-1017-2354</orcidid><orcidid>https://orcid.org/0000-0003-0813-7514</orcidid><orcidid>https://orcid.org/0000-0002-6575-6621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-12
issn 1862-6300
1862-6319
language eng
recordid cdi_crossref_primary_10_1002_pssa_202400736
source Wiley Online Library Journals Frontfile Complete
title Photocurrent Nanoscopy in the Near Field: A Comparative Study of Different Atomic Force Microscopy Tips in Relation to Their Optical Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocurrent%20Nanoscopy%20in%20the%20Near%20Field:%20A%20Comparative%20Study%20of%20Different%20Atomic%20Force%20Microscopy%20Tips%20in%20Relation%20to%20Their%20Optical%20Performance&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Dai,%20Dinghe&rft.date=2024-12-22&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202400736&rft_dat=%3Ccrossref%3E10_1002_pssa_202400736%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true