Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis

This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through preci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-08, Vol.222 (2)
Hauptverfasser: Hafaifa, Loumafak, Maache, Mostefa, Rabhi, Selma, Allam, Zehor, Gouchida, Zineb Ibtissem, Benbouzid, Yazid, Zebeir, Achouak, Adjouz, Razika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 222
creator Hafaifa, Loumafak
Maache, Mostefa
Rabhi, Selma
Allam, Zehor
Gouchida, Zineb Ibtissem
Benbouzid, Yazid
Zebeir, Achouak
Adjouz, Razika
description This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10 17  cm −3 ) for CZTSSe, 0.01 μm (10 18  cm −3 ) for CdS, and 0.02 μm (10 19  cm −3 ) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.
doi_str_mv 10.1002/pssa.202400332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202400332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158124898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-25a17c481a4ea0227cc910d866c38972735b0ae745fd5348b83450972c6b18fd3</originalsourceid><addsrcrecordid>eNo9kM9Kw0AYxBdRsFavnhc8J37f_kk23kpotVhQaL14WTabDU1Jk7qbHnLzEXxGn8SWSk8zMMMw_Ai5R4gRgD3uQjAxAyYAOGcXZIQqYVHCMbs8e4BrchPCBkBIkeKIzKft2rTWlTT_XC2Xjq7Wdfv7_TOrmy1ddo3xNHdNQ6dVVdvatXZ4oq9uoO_Gm63rnaeT1jRDqMMtuapME9zdv47Jx2y6yl-ixdvzPJ8sIosZ6yMmDaZWKDTCGWAstTZDKFWSWK6ylKVcFmBcKmRVSi5UobiQcAhsUqCqSj4mD6fdne--9i70etPt_eFE0BylQiZUpg6t-NSyvgvBu0rvfL01ftAI-ohLH3HpMy7-BwvrXEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158124898</pqid></control><display><type>article</type><title>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hafaifa, Loumafak ; Maache, Mostefa ; Rabhi, Selma ; Allam, Zehor ; Gouchida, Zineb Ibtissem ; Benbouzid, Yazid ; Zebeir, Achouak ; Adjouz, Razika</creator><creatorcontrib>Hafaifa, Loumafak ; Maache, Mostefa ; Rabhi, Selma ; Allam, Zehor ; Gouchida, Zineb Ibtissem ; Benbouzid, Yazid ; Zebeir, Achouak ; Adjouz, Razika</creatorcontrib><description>This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10 17  cm −3 ) for CZTSSe, 0.01 μm (10 18  cm −3 ) for CdS, and 0.02 μm (10 19  cm −3 ) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202400332</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bulk density ; Cadmium sulfide ; Doping ; Energy conversion efficiency ; Optimization ; Parameters ; Photoelectric effect ; Photovoltaic cells ; Solar cells ; Thickness ; Thin films ; Zinc oxide</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-08, Vol.222 (2)</ispartof><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-25a17c481a4ea0227cc910d866c38972735b0ae745fd5348b83450972c6b18fd3</cites><orcidid>0009-0000-0900-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hafaifa, Loumafak</creatorcontrib><creatorcontrib>Maache, Mostefa</creatorcontrib><creatorcontrib>Rabhi, Selma</creatorcontrib><creatorcontrib>Allam, Zehor</creatorcontrib><creatorcontrib>Gouchida, Zineb Ibtissem</creatorcontrib><creatorcontrib>Benbouzid, Yazid</creatorcontrib><creatorcontrib>Zebeir, Achouak</creatorcontrib><creatorcontrib>Adjouz, Razika</creatorcontrib><title>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</title><title>Physica status solidi. A, Applications and materials science</title><description>This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10 17  cm −3 ) for CZTSSe, 0.01 μm (10 18  cm −3 ) for CdS, and 0.02 μm (10 19  cm −3 ) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.</description><subject>Bulk density</subject><subject>Cadmium sulfide</subject><subject>Doping</subject><subject>Energy conversion efficiency</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Zinc oxide</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AYxBdRsFavnhc8J37f_kk23kpotVhQaL14WTabDU1Jk7qbHnLzEXxGn8SWSk8zMMMw_Ai5R4gRgD3uQjAxAyYAOGcXZIQqYVHCMbs8e4BrchPCBkBIkeKIzKft2rTWlTT_XC2Xjq7Wdfv7_TOrmy1ddo3xNHdNQ6dVVdvatXZ4oq9uoO_Gm63rnaeT1jRDqMMtuapME9zdv47Jx2y6yl-ixdvzPJ8sIosZ6yMmDaZWKDTCGWAstTZDKFWSWK6ylKVcFmBcKmRVSi5UobiQcAhsUqCqSj4mD6fdne--9i70etPt_eFE0BylQiZUpg6t-NSyvgvBu0rvfL01ftAI-ohLH3HpMy7-BwvrXEM</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Hafaifa, Loumafak</creator><creator>Maache, Mostefa</creator><creator>Rabhi, Selma</creator><creator>Allam, Zehor</creator><creator>Gouchida, Zineb Ibtissem</creator><creator>Benbouzid, Yazid</creator><creator>Zebeir, Achouak</creator><creator>Adjouz, Razika</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-0900-759X</orcidid></search><sort><creationdate>20240827</creationdate><title>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</title><author>Hafaifa, Loumafak ; Maache, Mostefa ; Rabhi, Selma ; Allam, Zehor ; Gouchida, Zineb Ibtissem ; Benbouzid, Yazid ; Zebeir, Achouak ; Adjouz, Razika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-25a17c481a4ea0227cc910d866c38972735b0ae745fd5348b83450972c6b18fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bulk density</topic><topic>Cadmium sulfide</topic><topic>Doping</topic><topic>Energy conversion efficiency</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafaifa, Loumafak</creatorcontrib><creatorcontrib>Maache, Mostefa</creatorcontrib><creatorcontrib>Rabhi, Selma</creatorcontrib><creatorcontrib>Allam, Zehor</creatorcontrib><creatorcontrib>Gouchida, Zineb Ibtissem</creatorcontrib><creatorcontrib>Benbouzid, Yazid</creatorcontrib><creatorcontrib>Zebeir, Achouak</creatorcontrib><creatorcontrib>Adjouz, Razika</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafaifa, Loumafak</au><au>Maache, Mostefa</au><au>Rabhi, Selma</au><au>Allam, Zehor</au><au>Gouchida, Zineb Ibtissem</au><au>Benbouzid, Yazid</au><au>Zebeir, Achouak</au><au>Adjouz, Razika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-08-27</date><risdate>2024</risdate><volume>222</volume><issue>2</issue><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10 17  cm −3 ) for CZTSSe, 0.01 μm (10 18  cm −3 ) for CdS, and 0.02 μm (10 19  cm −3 ) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202400332</doi><orcidid>https://orcid.org/0009-0000-0900-759X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-08, Vol.222 (2)
issn 1862-6300
1862-6319
language eng
recordid cdi_crossref_primary_10_1002_pssa_202400332
source Wiley Online Library Journals Frontfile Complete
subjects Bulk density
Cadmium sulfide
Doping
Energy conversion efficiency
Optimization
Parameters
Photoelectric effect
Photovoltaic cells
Solar cells
Thickness
Thin films
Zinc oxide
title Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20CZTSSe%20Thin%E2%80%90Film%20Solar%20Cell%20Efficiency:%20Key%20Parameter%20Analysis&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Hafaifa,%20Loumafak&rft.date=2024-08-27&rft.volume=222&rft.issue=2&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202400332&rft_dat=%3Cproquest_cross%3E3158124898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158124898&rft_id=info:pmid/&rfr_iscdi=true