Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis
This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through preci...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-08, Vol.222 (2) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 222 |
creator | Hafaifa, Loumafak Maache, Mostefa Rabhi, Selma Allam, Zehor Gouchida, Zineb Ibtissem Benbouzid, Yazid Zebeir, Achouak Adjouz, Razika |
description | This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10
17
cm
−3
) for CZTSSe, 0.01 μm (10
18
cm
−3
) for CdS, and 0.02 μm (10
19
cm
−3
) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells. |
doi_str_mv | 10.1002/pssa.202400332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202400332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158124898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-25a17c481a4ea0227cc910d866c38972735b0ae745fd5348b83450972c6b18fd3</originalsourceid><addsrcrecordid>eNo9kM9Kw0AYxBdRsFavnhc8J37f_kk23kpotVhQaL14WTabDU1Jk7qbHnLzEXxGn8SWSk8zMMMw_Ai5R4gRgD3uQjAxAyYAOGcXZIQqYVHCMbs8e4BrchPCBkBIkeKIzKft2rTWlTT_XC2Xjq7Wdfv7_TOrmy1ddo3xNHdNQ6dVVdvatXZ4oq9uoO_Gm63rnaeT1jRDqMMtuapME9zdv47Jx2y6yl-ixdvzPJ8sIosZ6yMmDaZWKDTCGWAstTZDKFWSWK6ylKVcFmBcKmRVSi5UobiQcAhsUqCqSj4mD6fdne--9i70etPt_eFE0BylQiZUpg6t-NSyvgvBu0rvfL01ftAI-ohLH3HpMy7-BwvrXEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158124898</pqid></control><display><type>article</type><title>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hafaifa, Loumafak ; Maache, Mostefa ; Rabhi, Selma ; Allam, Zehor ; Gouchida, Zineb Ibtissem ; Benbouzid, Yazid ; Zebeir, Achouak ; Adjouz, Razika</creator><creatorcontrib>Hafaifa, Loumafak ; Maache, Mostefa ; Rabhi, Selma ; Allam, Zehor ; Gouchida, Zineb Ibtissem ; Benbouzid, Yazid ; Zebeir, Achouak ; Adjouz, Razika</creatorcontrib><description>This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10
17
cm
−3
) for CZTSSe, 0.01 μm (10
18
cm
−3
) for CdS, and 0.02 μm (10
19
cm
−3
) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202400332</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bulk density ; Cadmium sulfide ; Doping ; Energy conversion efficiency ; Optimization ; Parameters ; Photoelectric effect ; Photovoltaic cells ; Solar cells ; Thickness ; Thin films ; Zinc oxide</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-08, Vol.222 (2)</ispartof><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-25a17c481a4ea0227cc910d866c38972735b0ae745fd5348b83450972c6b18fd3</cites><orcidid>0009-0000-0900-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hafaifa, Loumafak</creatorcontrib><creatorcontrib>Maache, Mostefa</creatorcontrib><creatorcontrib>Rabhi, Selma</creatorcontrib><creatorcontrib>Allam, Zehor</creatorcontrib><creatorcontrib>Gouchida, Zineb Ibtissem</creatorcontrib><creatorcontrib>Benbouzid, Yazid</creatorcontrib><creatorcontrib>Zebeir, Achouak</creatorcontrib><creatorcontrib>Adjouz, Razika</creatorcontrib><title>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</title><title>Physica status solidi. A, Applications and materials science</title><description>This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10
17
cm
−3
) for CZTSSe, 0.01 μm (10
18
cm
−3
) for CdS, and 0.02 μm (10
19
cm
−3
) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.</description><subject>Bulk density</subject><subject>Cadmium sulfide</subject><subject>Doping</subject><subject>Energy conversion efficiency</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Zinc oxide</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AYxBdRsFavnhc8J37f_kk23kpotVhQaL14WTabDU1Jk7qbHnLzEXxGn8SWSk8zMMMw_Ai5R4gRgD3uQjAxAyYAOGcXZIQqYVHCMbs8e4BrchPCBkBIkeKIzKft2rTWlTT_XC2Xjq7Wdfv7_TOrmy1ddo3xNHdNQ6dVVdvatXZ4oq9uoO_Gm63rnaeT1jRDqMMtuapME9zdv47Jx2y6yl-ixdvzPJ8sIosZ6yMmDaZWKDTCGWAstTZDKFWSWK6ylKVcFmBcKmRVSi5UobiQcAhsUqCqSj4mD6fdne--9i70etPt_eFE0BylQiZUpg6t-NSyvgvBu0rvfL01ftAI-ohLH3HpMy7-BwvrXEM</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Hafaifa, Loumafak</creator><creator>Maache, Mostefa</creator><creator>Rabhi, Selma</creator><creator>Allam, Zehor</creator><creator>Gouchida, Zineb Ibtissem</creator><creator>Benbouzid, Yazid</creator><creator>Zebeir, Achouak</creator><creator>Adjouz, Razika</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-0900-759X</orcidid></search><sort><creationdate>20240827</creationdate><title>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</title><author>Hafaifa, Loumafak ; Maache, Mostefa ; Rabhi, Selma ; Allam, Zehor ; Gouchida, Zineb Ibtissem ; Benbouzid, Yazid ; Zebeir, Achouak ; Adjouz, Razika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-25a17c481a4ea0227cc910d866c38972735b0ae745fd5348b83450972c6b18fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bulk density</topic><topic>Cadmium sulfide</topic><topic>Doping</topic><topic>Energy conversion efficiency</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafaifa, Loumafak</creatorcontrib><creatorcontrib>Maache, Mostefa</creatorcontrib><creatorcontrib>Rabhi, Selma</creatorcontrib><creatorcontrib>Allam, Zehor</creatorcontrib><creatorcontrib>Gouchida, Zineb Ibtissem</creatorcontrib><creatorcontrib>Benbouzid, Yazid</creatorcontrib><creatorcontrib>Zebeir, Achouak</creatorcontrib><creatorcontrib>Adjouz, Razika</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafaifa, Loumafak</au><au>Maache, Mostefa</au><au>Rabhi, Selma</au><au>Allam, Zehor</au><au>Gouchida, Zineb Ibtissem</au><au>Benbouzid, Yazid</au><au>Zebeir, Achouak</au><au>Adjouz, Razika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-08-27</date><risdate>2024</risdate><volume>222</volume><issue>2</issue><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10
17
cm
−3
) for CZTSSe, 0.01 μm (10
18
cm
−3
) for CdS, and 0.02 μm (10
19
cm
−3
) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202400332</doi><orcidid>https://orcid.org/0009-0000-0900-759X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-08, Vol.222 (2) |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssa_202400332 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bulk density Cadmium sulfide Doping Energy conversion efficiency Optimization Parameters Photoelectric effect Photovoltaic cells Solar cells Thickness Thin films Zinc oxide |
title | Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20CZTSSe%20Thin%E2%80%90Film%20Solar%20Cell%20Efficiency:%20Key%20Parameter%20Analysis&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Hafaifa,%20Loumafak&rft.date=2024-08-27&rft.volume=222&rft.issue=2&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202400332&rft_dat=%3Cproquest_cross%3E3158124898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158124898&rft_id=info:pmid/&rfr_iscdi=true |