Evolution of the Electrical Conductivity of LiNb 1− x Ta x O 3 Solid Solutions across the Ferroelectric Phase Transformation
The investigation of the structural phase transition in the vicinity of the Curie temperature of crystals is motivated by the expected combination of advantageous high‐temperature properties of and , including high piezoelectric modules and remarkable high‐temperature stability, respectively. marks...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-05 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | |
creator | El Azzouzi, Fatima‐Ezzahrae Klimm, Detlef Kapp, Alexander Verhoff, Leonard M. Schäfer, Nils A. Ganschow, Steffen Becker, Klaus.‐Dieter Sanna, Simone Fritze, Holger |
description | The investigation of the structural phase transition in the vicinity of the Curie temperature of crystals is motivated by the expected combination of advantageous high‐temperature properties of and , including high piezoelectric modules and remarkable high‐temperature stability, respectively. marks the ultimate limit for exploiting the piezoelectric properties; however, transition‐related structural modifications might impact this and other properties even below . Remarkably, the phase transition from the ferroelectric to the paraelectric phase, whose temperature strongly depends on the composition
x
, shows a significant drop in the activation energy of the electrical conductivity. The magnitude, temperature dependence, and underlying mechanisms of this drop are discussed from a microscopic perspective. Molecular dynamics calculations in the framework of the density functional theory show that substantial displacements of the cations occur below for both the end compounds and , and might thus affect the electrical conductivity. Above , the migration of lithium ions is presumably facilitated by a shortened diffusion path for the most favorable jump of the lithium ions. Electronic contributions to the conductivity, which become important above 900 K, are explained within the polaronic picture by the formation and migration of free small polarons. |
doi_str_mv | 10.1002/pssa.202300966 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202300966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssa_202300966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c846-d570bcf55849a05ef4c8b1fe6455540e430c86473e890e155546ea6cef655ee63</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQhxdRsFavnvcFUmezf5ocJaRaCFYw97DdztKVtFt202Ivnj37iD6JJpZefjPMDB_DR8g9gwkDSB92MepJCikHyJW6ICOWqTRRnOWX5x7gmtzE-A4gpJiyEfksD77dd85vqbe0WyMtWzRdcEa3tPDb1d507uC6Y7-u3MuSsp-vb_pBa_0XC8rpm2_dqs-BEqk2wcc4oGYYgscTj76udURaB72N1oeN7s9vyZXVbcS7Ux2TelbWxXNSLZ7mxWOVmEyoZCWnsDRWykzkGiRaYbIls6iElFIACg4mU2LKMcsBWT9UqJVBq6REVHxMJv_Y4beAttkFt9Hh2DBoenlNL685y-O_79FkoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolution of the Electrical Conductivity of LiNb 1− x Ta x O 3 Solid Solutions across the Ferroelectric Phase Transformation</title><source>Wiley Online Library All Journals</source><creator>El Azzouzi, Fatima‐Ezzahrae ; Klimm, Detlef ; Kapp, Alexander ; Verhoff, Leonard M. ; Schäfer, Nils A. ; Ganschow, Steffen ; Becker, Klaus.‐Dieter ; Sanna, Simone ; Fritze, Holger</creator><creatorcontrib>El Azzouzi, Fatima‐Ezzahrae ; Klimm, Detlef ; Kapp, Alexander ; Verhoff, Leonard M. ; Schäfer, Nils A. ; Ganschow, Steffen ; Becker, Klaus.‐Dieter ; Sanna, Simone ; Fritze, Holger</creatorcontrib><description>The investigation of the structural phase transition in the vicinity of the Curie temperature of crystals is motivated by the expected combination of advantageous high‐temperature properties of and , including high piezoelectric modules and remarkable high‐temperature stability, respectively. marks the ultimate limit for exploiting the piezoelectric properties; however, transition‐related structural modifications might impact this and other properties even below . Remarkably, the phase transition from the ferroelectric to the paraelectric phase, whose temperature strongly depends on the composition
x
, shows a significant drop in the activation energy of the electrical conductivity. The magnitude, temperature dependence, and underlying mechanisms of this drop are discussed from a microscopic perspective. Molecular dynamics calculations in the framework of the density functional theory show that substantial displacements of the cations occur below for both the end compounds and , and might thus affect the electrical conductivity. Above , the migration of lithium ions is presumably facilitated by a shortened diffusion path for the most favorable jump of the lithium ions. Electronic contributions to the conductivity, which become important above 900 K, are explained within the polaronic picture by the formation and migration of free small polarons.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300966</identifier><language>eng</language><ispartof>Physica status solidi. A, Applications and materials science, 2024-05</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c846-d570bcf55849a05ef4c8b1fe6455540e430c86473e890e155546ea6cef655ee63</citedby><cites>FETCH-LOGICAL-c846-d570bcf55849a05ef4c8b1fe6455540e430c86473e890e155546ea6cef655ee63</cites><orcidid>0009-0009-4651-6057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>El Azzouzi, Fatima‐Ezzahrae</creatorcontrib><creatorcontrib>Klimm, Detlef</creatorcontrib><creatorcontrib>Kapp, Alexander</creatorcontrib><creatorcontrib>Verhoff, Leonard M.</creatorcontrib><creatorcontrib>Schäfer, Nils A.</creatorcontrib><creatorcontrib>Ganschow, Steffen</creatorcontrib><creatorcontrib>Becker, Klaus.‐Dieter</creatorcontrib><creatorcontrib>Sanna, Simone</creatorcontrib><creatorcontrib>Fritze, Holger</creatorcontrib><title>Evolution of the Electrical Conductivity of LiNb 1− x Ta x O 3 Solid Solutions across the Ferroelectric Phase Transformation</title><title>Physica status solidi. A, Applications and materials science</title><description>The investigation of the structural phase transition in the vicinity of the Curie temperature of crystals is motivated by the expected combination of advantageous high‐temperature properties of and , including high piezoelectric modules and remarkable high‐temperature stability, respectively. marks the ultimate limit for exploiting the piezoelectric properties; however, transition‐related structural modifications might impact this and other properties even below . Remarkably, the phase transition from the ferroelectric to the paraelectric phase, whose temperature strongly depends on the composition
x
, shows a significant drop in the activation energy of the electrical conductivity. The magnitude, temperature dependence, and underlying mechanisms of this drop are discussed from a microscopic perspective. Molecular dynamics calculations in the framework of the density functional theory show that substantial displacements of the cations occur below for both the end compounds and , and might thus affect the electrical conductivity. Above , the migration of lithium ions is presumably facilitated by a shortened diffusion path for the most favorable jump of the lithium ions. Electronic contributions to the conductivity, which become important above 900 K, are explained within the polaronic picture by the formation and migration of free small polarons.</description><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQhxdRsFavnvcFUmezf5ocJaRaCFYw97DdztKVtFt202Ivnj37iD6JJpZefjPMDB_DR8g9gwkDSB92MepJCikHyJW6ICOWqTRRnOWX5x7gmtzE-A4gpJiyEfksD77dd85vqbe0WyMtWzRdcEa3tPDb1d507uC6Y7-u3MuSsp-vb_pBa_0XC8rpm2_dqs-BEqk2wcc4oGYYgscTj76udURaB72N1oeN7s9vyZXVbcS7Ux2TelbWxXNSLZ7mxWOVmEyoZCWnsDRWykzkGiRaYbIls6iElFIACg4mU2LKMcsBWT9UqJVBq6REVHxMJv_Y4beAttkFt9Hh2DBoenlNL685y-O_79FkoA</recordid><startdate>20240519</startdate><enddate>20240519</enddate><creator>El Azzouzi, Fatima‐Ezzahrae</creator><creator>Klimm, Detlef</creator><creator>Kapp, Alexander</creator><creator>Verhoff, Leonard M.</creator><creator>Schäfer, Nils A.</creator><creator>Ganschow, Steffen</creator><creator>Becker, Klaus.‐Dieter</creator><creator>Sanna, Simone</creator><creator>Fritze, Holger</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-4651-6057</orcidid></search><sort><creationdate>20240519</creationdate><title>Evolution of the Electrical Conductivity of LiNb 1− x Ta x O 3 Solid Solutions across the Ferroelectric Phase Transformation</title><author>El Azzouzi, Fatima‐Ezzahrae ; Klimm, Detlef ; Kapp, Alexander ; Verhoff, Leonard M. ; Schäfer, Nils A. ; Ganschow, Steffen ; Becker, Klaus.‐Dieter ; Sanna, Simone ; Fritze, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c846-d570bcf55849a05ef4c8b1fe6455540e430c86473e890e155546ea6cef655ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Azzouzi, Fatima‐Ezzahrae</creatorcontrib><creatorcontrib>Klimm, Detlef</creatorcontrib><creatorcontrib>Kapp, Alexander</creatorcontrib><creatorcontrib>Verhoff, Leonard M.</creatorcontrib><creatorcontrib>Schäfer, Nils A.</creatorcontrib><creatorcontrib>Ganschow, Steffen</creatorcontrib><creatorcontrib>Becker, Klaus.‐Dieter</creatorcontrib><creatorcontrib>Sanna, Simone</creatorcontrib><creatorcontrib>Fritze, Holger</creatorcontrib><collection>CrossRef</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Azzouzi, Fatima‐Ezzahrae</au><au>Klimm, Detlef</au><au>Kapp, Alexander</au><au>Verhoff, Leonard M.</au><au>Schäfer, Nils A.</au><au>Ganschow, Steffen</au><au>Becker, Klaus.‐Dieter</au><au>Sanna, Simone</au><au>Fritze, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Electrical Conductivity of LiNb 1− x Ta x O 3 Solid Solutions across the Ferroelectric Phase Transformation</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-05-19</date><risdate>2024</risdate><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The investigation of the structural phase transition in the vicinity of the Curie temperature of crystals is motivated by the expected combination of advantageous high‐temperature properties of and , including high piezoelectric modules and remarkable high‐temperature stability, respectively. marks the ultimate limit for exploiting the piezoelectric properties; however, transition‐related structural modifications might impact this and other properties even below . Remarkably, the phase transition from the ferroelectric to the paraelectric phase, whose temperature strongly depends on the composition
x
, shows a significant drop in the activation energy of the electrical conductivity. The magnitude, temperature dependence, and underlying mechanisms of this drop are discussed from a microscopic perspective. Molecular dynamics calculations in the framework of the density functional theory show that substantial displacements of the cations occur below for both the end compounds and , and might thus affect the electrical conductivity. Above , the migration of lithium ions is presumably facilitated by a shortened diffusion path for the most favorable jump of the lithium ions. Electronic contributions to the conductivity, which become important above 900 K, are explained within the polaronic picture by the formation and migration of free small polarons.</abstract><doi>10.1002/pssa.202300966</doi><orcidid>https://orcid.org/0009-0009-4651-6057</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-05 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssa_202300966 |
source | Wiley Online Library All Journals |
title | Evolution of the Electrical Conductivity of LiNb 1− x Ta x O 3 Solid Solutions across the Ferroelectric Phase Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Electrical%20Conductivity%20of%20LiNb%201%E2%88%92%20x%20Ta%20x%20O%203%20Solid%20Solutions%20across%20the%20Ferroelectric%20Phase%20Transformation&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=El%20Azzouzi,%20Fatima%E2%80%90Ezzahrae&rft.date=2024-05-19&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300966&rft_dat=%3Ccrossref%3E10_1002_pssa_202300966%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |