Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector
Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2021-12, Vol.218 (23), p.n/a, Article 2100212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 218 |
creator | Bakhlanov, Sergey Bazlov, Nikolay Chernobrovkin, Ilia Danilov, Denis Derbin, Alexander Drachnev, Ilia Kotina, Irina Konkov, Oleg Kuzmichev, Artem Mikulich, Maksim Muratova, Valentina Trushin, Maxim Unzhakov, Evgeniy |
description | Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E
V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors.
Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation. |
doi_str_mv | 10.1002/pssa.202100212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202100212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604790148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-5bf6e2b933905042717ced368564417f877816f7ef78953e65698ad14601d8d63</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhSMEEr9b1pZYopaxk9jOspQClZBAallHrjMWrkIS7ASUHUfgKlyEQ3ASXIrKElYe2-978_Si6JjCkAKws8Z7NWTAVhfKtqI9Kjkb8Jhm25sZYDfa934JkKSJoHvRw6RE3TqrVVn2ZKRb-4zkAk149GRaFZ3Ggix68vH--fp2p1xrdYlk6pwqrGptXRFbkSb8zfsGycySWeeM0kjOlXMWXfBqg1ftDqMdo0qPRz_nQXR_OZmPrwc3t1fT8ehmoJlgbJAuDEe2yOI4gxQSJqgICWIuU54kVBgphKTcCDRCZmmMPOWZVAVNONBCFjw-iE7Wvo2rnzr0bb6sO1eFlTnjkIgMaCKDarhWaVd779DkjbOPyvU5hXxVYL5qM9-0GYDTNfCCi9p4bbHSuIEAgAsI3lmYgAa1_L96bNvvJsd1V7UBzX5QW2L_R6z8bjYb_Yb8AkuGmu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604790148</pqid></control><display><type>article</type><title>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Bakhlanov, Sergey ; Bazlov, Nikolay ; Chernobrovkin, Ilia ; Danilov, Denis ; Derbin, Alexander ; Drachnev, Ilia ; Kotina, Irina ; Konkov, Oleg ; Kuzmichev, Artem ; Mikulich, Maksim ; Muratova, Valentina ; Trushin, Maxim ; Unzhakov, Evgeniy</creator><creatorcontrib>Bakhlanov, Sergey ; Bazlov, Nikolay ; Chernobrovkin, Ilia ; Danilov, Denis ; Derbin, Alexander ; Drachnev, Ilia ; Kotina, Irina ; Konkov, Oleg ; Kuzmichev, Artem ; Mikulich, Maksim ; Muratova, Valentina ; Trushin, Maxim ; Unzhakov, Evgeniy</creatorcontrib><description>Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E
V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors.
Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100212</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Aluminum ; deep-level transient spectroscopy ; Defects ; Irradiation ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Radiation ; radiation-induced defects ; Room temperature ; Science & Technology ; semiconductor detectors ; silicon ; Silicon dioxide ; Technology ; α-particles</subject><ispartof>Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (23), p.n/a, Article 2100212</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000670790900001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c2722-5bf6e2b933905042717ced368564417f877816f7ef78953e65698ad14601d8d63</cites><orcidid>0000-0001-7620-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Bakhlanov, Sergey</creatorcontrib><creatorcontrib>Bazlov, Nikolay</creatorcontrib><creatorcontrib>Chernobrovkin, Ilia</creatorcontrib><creatorcontrib>Danilov, Denis</creatorcontrib><creatorcontrib>Derbin, Alexander</creatorcontrib><creatorcontrib>Drachnev, Ilia</creatorcontrib><creatorcontrib>Kotina, Irina</creatorcontrib><creatorcontrib>Konkov, Oleg</creatorcontrib><creatorcontrib>Kuzmichev, Artem</creatorcontrib><creatorcontrib>Mikulich, Maksim</creatorcontrib><creatorcontrib>Muratova, Valentina</creatorcontrib><creatorcontrib>Trushin, Maxim</creatorcontrib><creatorcontrib>Unzhakov, Evgeniy</creatorcontrib><title>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>PHYS STATUS SOLIDI A</addtitle><description>Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E
V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors.
Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.</description><subject>Aluminum</subject><subject>deep-level transient spectroscopy</subject><subject>Defects</subject><subject>Irradiation</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Radiation</subject><subject>radiation-induced defects</subject><subject>Room temperature</subject><subject>Science & Technology</subject><subject>semiconductor detectors</subject><subject>silicon</subject><subject>Silicon dioxide</subject><subject>Technology</subject><subject>α-particles</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1OwzAQhSMEEr9b1pZYopaxk9jOspQClZBAallHrjMWrkIS7ASUHUfgKlyEQ3ASXIrKElYe2-978_Si6JjCkAKws8Z7NWTAVhfKtqI9Kjkb8Jhm25sZYDfa934JkKSJoHvRw6RE3TqrVVn2ZKRb-4zkAk149GRaFZ3Ggix68vH--fp2p1xrdYlk6pwqrGptXRFbkSb8zfsGycySWeeM0kjOlXMWXfBqg1ftDqMdo0qPRz_nQXR_OZmPrwc3t1fT8ehmoJlgbJAuDEe2yOI4gxQSJqgICWIuU54kVBgphKTcCDRCZmmMPOWZVAVNONBCFjw-iE7Wvo2rnzr0bb6sO1eFlTnjkIgMaCKDarhWaVd779DkjbOPyvU5hXxVYL5qM9-0GYDTNfCCi9p4bbHSuIEAgAsI3lmYgAa1_L96bNvvJsd1V7UBzX5QW2L_R6z8bjYb_Yb8AkuGmu8</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bakhlanov, Sergey</creator><creator>Bazlov, Nikolay</creator><creator>Chernobrovkin, Ilia</creator><creator>Danilov, Denis</creator><creator>Derbin, Alexander</creator><creator>Drachnev, Ilia</creator><creator>Kotina, Irina</creator><creator>Konkov, Oleg</creator><creator>Kuzmichev, Artem</creator><creator>Mikulich, Maksim</creator><creator>Muratova, Valentina</creator><creator>Trushin, Maxim</creator><creator>Unzhakov, Evgeniy</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7620-0955</orcidid></search><sort><creationdate>202112</creationdate><title>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</title><author>Bakhlanov, Sergey ; Bazlov, Nikolay ; Chernobrovkin, Ilia ; Danilov, Denis ; Derbin, Alexander ; Drachnev, Ilia ; Kotina, Irina ; Konkov, Oleg ; Kuzmichev, Artem ; Mikulich, Maksim ; Muratova, Valentina ; Trushin, Maxim ; Unzhakov, Evgeniy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-5bf6e2b933905042717ced368564417f877816f7ef78953e65698ad14601d8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>deep-level transient spectroscopy</topic><topic>Defects</topic><topic>Irradiation</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Radiation</topic><topic>radiation-induced defects</topic><topic>Room temperature</topic><topic>Science & Technology</topic><topic>semiconductor detectors</topic><topic>silicon</topic><topic>Silicon dioxide</topic><topic>Technology</topic><topic>α-particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakhlanov, Sergey</creatorcontrib><creatorcontrib>Bazlov, Nikolay</creatorcontrib><creatorcontrib>Chernobrovkin, Ilia</creatorcontrib><creatorcontrib>Danilov, Denis</creatorcontrib><creatorcontrib>Derbin, Alexander</creatorcontrib><creatorcontrib>Drachnev, Ilia</creatorcontrib><creatorcontrib>Kotina, Irina</creatorcontrib><creatorcontrib>Konkov, Oleg</creatorcontrib><creatorcontrib>Kuzmichev, Artem</creatorcontrib><creatorcontrib>Mikulich, Maksim</creatorcontrib><creatorcontrib>Muratova, Valentina</creatorcontrib><creatorcontrib>Trushin, Maxim</creatorcontrib><creatorcontrib>Unzhakov, Evgeniy</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakhlanov, Sergey</au><au>Bazlov, Nikolay</au><au>Chernobrovkin, Ilia</au><au>Danilov, Denis</au><au>Derbin, Alexander</au><au>Drachnev, Ilia</au><au>Kotina, Irina</au><au>Konkov, Oleg</au><au>Kuzmichev, Artem</au><au>Mikulich, Maksim</au><au>Muratova, Valentina</au><au>Trushin, Maxim</au><au>Unzhakov, Evgeniy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><stitle>PHYS STATUS SOLIDI A</stitle><date>2021-12</date><risdate>2021</risdate><volume>218</volume><issue>23</issue><epage>n/a</epage><artnum>2100212</artnum><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E
V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors.
Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/pssa.202100212</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7620-0955</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (23), p.n/a, Article 2100212 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssa_202100212 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aluminum deep-level transient spectroscopy Defects Irradiation Materials Science Materials Science, Multidisciplinary Physical Sciences Physics Physics, Applied Physics, Condensed Matter Radiation radiation-induced defects Room temperature Science & Technology semiconductor detectors silicon Silicon dioxide Technology α-particles |
title | Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Active%20Defects%20Induced%20by%20%CE%B1%E2%80%90Particle%20Irradiation%20in%20p%E2%80%90Type%20Si%20Surface%20Barrier%20Detector&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Bakhlanov,%20Sergey&rft.date=2021-12&rft.volume=218&rft.issue=23&rft.epage=n/a&rft.artnum=2100212&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100212&rft_dat=%3Cproquest_cross%3E2604790148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604790148&rft_id=info:pmid/&rfr_iscdi=true |