Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector

Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2021-12, Vol.218 (23), p.n/a, Article 2100212
Hauptverfasser: Bakhlanov, Sergey, Bazlov, Nikolay, Chernobrovkin, Ilia, Danilov, Denis, Derbin, Alexander, Drachnev, Ilia, Kotina, Irina, Konkov, Oleg, Kuzmichev, Artem, Mikulich, Maksim, Muratova, Valentina, Trushin, Maxim, Unzhakov, Evgeniy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 218
creator Bakhlanov, Sergey
Bazlov, Nikolay
Chernobrovkin, Ilia
Danilov, Denis
Derbin, Alexander
Drachnev, Ilia
Kotina, Irina
Konkov, Oleg
Kuzmichev, Artem
Mikulich, Maksim
Muratova, Valentina
Trushin, Maxim
Unzhakov, Evgeniy
description Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors. Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.
doi_str_mv 10.1002/pssa.202100212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_202100212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604790148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-5bf6e2b933905042717ced368564417f877816f7ef78953e65698ad14601d8d63</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhSMEEr9b1pZYopaxk9jOspQClZBAallHrjMWrkIS7ASUHUfgKlyEQ3ASXIrKElYe2-978_Si6JjCkAKws8Z7NWTAVhfKtqI9Kjkb8Jhm25sZYDfa934JkKSJoHvRw6RE3TqrVVn2ZKRb-4zkAk149GRaFZ3Ggix68vH--fp2p1xrdYlk6pwqrGptXRFbkSb8zfsGycySWeeM0kjOlXMWXfBqg1ftDqMdo0qPRz_nQXR_OZmPrwc3t1fT8ehmoJlgbJAuDEe2yOI4gxQSJqgICWIuU54kVBgphKTcCDRCZmmMPOWZVAVNONBCFjw-iE7Wvo2rnzr0bb6sO1eFlTnjkIgMaCKDarhWaVd779DkjbOPyvU5hXxVYL5qM9-0GYDTNfCCi9p4bbHSuIEAgAsI3lmYgAa1_L96bNvvJsd1V7UBzX5QW2L_R6z8bjYb_Yb8AkuGmu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604790148</pqid></control><display><type>article</type><title>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Bakhlanov, Sergey ; Bazlov, Nikolay ; Chernobrovkin, Ilia ; Danilov, Denis ; Derbin, Alexander ; Drachnev, Ilia ; Kotina, Irina ; Konkov, Oleg ; Kuzmichev, Artem ; Mikulich, Maksim ; Muratova, Valentina ; Trushin, Maxim ; Unzhakov, Evgeniy</creator><creatorcontrib>Bakhlanov, Sergey ; Bazlov, Nikolay ; Chernobrovkin, Ilia ; Danilov, Denis ; Derbin, Alexander ; Drachnev, Ilia ; Kotina, Irina ; Konkov, Oleg ; Kuzmichev, Artem ; Mikulich, Maksim ; Muratova, Valentina ; Trushin, Maxim ; Unzhakov, Evgeniy</creatorcontrib><description>Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors. Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100212</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Aluminum ; deep-level transient spectroscopy ; Defects ; Irradiation ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Radiation ; radiation-induced defects ; Room temperature ; Science &amp; Technology ; semiconductor detectors ; silicon ; Silicon dioxide ; Technology ; α-particles</subject><ispartof>Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (23), p.n/a, Article 2100212</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000670790900001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c2722-5bf6e2b933905042717ced368564417f877816f7ef78953e65698ad14601d8d63</cites><orcidid>0000-0001-7620-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Bakhlanov, Sergey</creatorcontrib><creatorcontrib>Bazlov, Nikolay</creatorcontrib><creatorcontrib>Chernobrovkin, Ilia</creatorcontrib><creatorcontrib>Danilov, Denis</creatorcontrib><creatorcontrib>Derbin, Alexander</creatorcontrib><creatorcontrib>Drachnev, Ilia</creatorcontrib><creatorcontrib>Kotina, Irina</creatorcontrib><creatorcontrib>Konkov, Oleg</creatorcontrib><creatorcontrib>Kuzmichev, Artem</creatorcontrib><creatorcontrib>Mikulich, Maksim</creatorcontrib><creatorcontrib>Muratova, Valentina</creatorcontrib><creatorcontrib>Trushin, Maxim</creatorcontrib><creatorcontrib>Unzhakov, Evgeniy</creatorcontrib><title>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>PHYS STATUS SOLIDI A</addtitle><description>Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors. Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.</description><subject>Aluminum</subject><subject>deep-level transient spectroscopy</subject><subject>Defects</subject><subject>Irradiation</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Radiation</subject><subject>radiation-induced defects</subject><subject>Room temperature</subject><subject>Science &amp; Technology</subject><subject>semiconductor detectors</subject><subject>silicon</subject><subject>Silicon dioxide</subject><subject>Technology</subject><subject>α-particles</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1OwzAQhSMEEr9b1pZYopaxk9jOspQClZBAallHrjMWrkIS7ASUHUfgKlyEQ3ASXIrKElYe2-978_Si6JjCkAKws8Z7NWTAVhfKtqI9Kjkb8Jhm25sZYDfa934JkKSJoHvRw6RE3TqrVVn2ZKRb-4zkAk149GRaFZ3Ggix68vH--fp2p1xrdYlk6pwqrGptXRFbkSb8zfsGycySWeeM0kjOlXMWXfBqg1ftDqMdo0qPRz_nQXR_OZmPrwc3t1fT8ehmoJlgbJAuDEe2yOI4gxQSJqgICWIuU54kVBgphKTcCDRCZmmMPOWZVAVNONBCFjw-iE7Wvo2rnzr0bb6sO1eFlTnjkIgMaCKDarhWaVd779DkjbOPyvU5hXxVYL5qM9-0GYDTNfCCi9p4bbHSuIEAgAsI3lmYgAa1_L96bNvvJsd1V7UBzX5QW2L_R6z8bjYb_Yb8AkuGmu8</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bakhlanov, Sergey</creator><creator>Bazlov, Nikolay</creator><creator>Chernobrovkin, Ilia</creator><creator>Danilov, Denis</creator><creator>Derbin, Alexander</creator><creator>Drachnev, Ilia</creator><creator>Kotina, Irina</creator><creator>Konkov, Oleg</creator><creator>Kuzmichev, Artem</creator><creator>Mikulich, Maksim</creator><creator>Muratova, Valentina</creator><creator>Trushin, Maxim</creator><creator>Unzhakov, Evgeniy</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7620-0955</orcidid></search><sort><creationdate>202112</creationdate><title>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</title><author>Bakhlanov, Sergey ; Bazlov, Nikolay ; Chernobrovkin, Ilia ; Danilov, Denis ; Derbin, Alexander ; Drachnev, Ilia ; Kotina, Irina ; Konkov, Oleg ; Kuzmichev, Artem ; Mikulich, Maksim ; Muratova, Valentina ; Trushin, Maxim ; Unzhakov, Evgeniy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-5bf6e2b933905042717ced368564417f877816f7ef78953e65698ad14601d8d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>deep-level transient spectroscopy</topic><topic>Defects</topic><topic>Irradiation</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Radiation</topic><topic>radiation-induced defects</topic><topic>Room temperature</topic><topic>Science &amp; Technology</topic><topic>semiconductor detectors</topic><topic>silicon</topic><topic>Silicon dioxide</topic><topic>Technology</topic><topic>α-particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakhlanov, Sergey</creatorcontrib><creatorcontrib>Bazlov, Nikolay</creatorcontrib><creatorcontrib>Chernobrovkin, Ilia</creatorcontrib><creatorcontrib>Danilov, Denis</creatorcontrib><creatorcontrib>Derbin, Alexander</creatorcontrib><creatorcontrib>Drachnev, Ilia</creatorcontrib><creatorcontrib>Kotina, Irina</creatorcontrib><creatorcontrib>Konkov, Oleg</creatorcontrib><creatorcontrib>Kuzmichev, Artem</creatorcontrib><creatorcontrib>Mikulich, Maksim</creatorcontrib><creatorcontrib>Muratova, Valentina</creatorcontrib><creatorcontrib>Trushin, Maxim</creatorcontrib><creatorcontrib>Unzhakov, Evgeniy</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakhlanov, Sergey</au><au>Bazlov, Nikolay</au><au>Chernobrovkin, Ilia</au><au>Danilov, Denis</au><au>Derbin, Alexander</au><au>Drachnev, Ilia</au><au>Kotina, Irina</au><au>Konkov, Oleg</au><au>Kuzmichev, Artem</au><au>Mikulich, Maksim</au><au>Muratova, Valentina</au><au>Trushin, Maxim</au><au>Unzhakov, Evgeniy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><stitle>PHYS STATUS SOLIDI A</stitle><date>2021-12</date><risdate>2021</risdate><volume>218</volume><issue>23</issue><epage>n/a</epage><artnum>2100212</artnum><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Herein, the investigation of radiation‐induced defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance−voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods is conducted. The carried out C−V measurements indicate the formation of at least 8 × 1012 cm−3 radiation‐induced acceptor traps at the depth fairly close to that where, according to TRIM simulations, the highest concentration of vacancy‐interstitial pairs is created by the incoming α‐particles. The studies conducted by the current DLTS technique allow to relate the observed increase in the acceptor concentration with the near‐midgap level at E V + 0.56 eV. This level can apparently be associated with V2O defects recognized previously to be responsible for the space−charge sign inversion in the irradiated n‐type Si detectors. Herein, the defects generated in the Al/SiO2/p‐type FZ Si surface barrier detector upon irradiation with α‐particles at room temperature using capacitance‐voltage (C−V) and current deep‐level transient spectroscopy (IDLTS) methods are described. Local increase in the acceptor charge and the appearance of the defect level at 0.56 eV above the valence band are shown to occur after irradiation.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/pssa.202100212</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7620-0955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2021-12, Vol.218 (23), p.n/a, Article 2100212
issn 1862-6300
1862-6319
language eng
recordid cdi_crossref_primary_10_1002_pssa_202100212
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aluminum
deep-level transient spectroscopy
Defects
Irradiation
Materials Science
Materials Science, Multidisciplinary
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Radiation
radiation-induced defects
Room temperature
Science & Technology
semiconductor detectors
silicon
Silicon dioxide
Technology
α-particles
title Electrically Active Defects Induced by α‐Particle Irradiation in p‐Type Si Surface Barrier Detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Active%20Defects%20Induced%20by%20%CE%B1%E2%80%90Particle%20Irradiation%20in%20p%E2%80%90Type%20Si%20Surface%20Barrier%20Detector&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Bakhlanov,%20Sergey&rft.date=2021-12&rft.volume=218&rft.issue=23&rft.epage=n/a&rft.artnum=2100212&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100212&rft_dat=%3Cproquest_cross%3E2604790148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604790148&rft_id=info:pmid/&rfr_iscdi=true