Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application

Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2009-09, Vol.206 (9), p.2187-2191
Hauptverfasser: Ogo, Yoichi, Hiramatsu, Hidenori, Nomura, Kenji, Yanagi, Hiroshi, Kamiya, Toshio, Kimura, Mutsumi, Hirano, Masahiro, Hosono, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2191
container_issue 9
container_start_page 2187
container_title Physica status solidi. A, Applications and materials science
container_volume 206
creator Ogo, Yoichi
Hiramatsu, Hidenori
Nomura, Kenji
Yanagi, Hiroshi
Kamiya, Toshio
Kimura, Mutsumi
Hirano, Masahiro
Hosono, Hideo
description Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is >1019 cm−3, which limits the TFT mobilities and the S values.
doi_str_mv 10.1002/pssa.200881792
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_200881792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_Q29SQ8GF_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEEqWwMnthdLGdT7NVVVuQKqBqUEfrYjvCkMaRHUT735MoKGJjutPd-73TvSC4pWRGCWH3jfcwY4RkGU05OwsmNEsYTkLKz8eekMvgyvsPQqI4SukkeM9NjQ62tkejNAKPoEYeW1eYFipcgNcKNbg9NRoNEq8PRtpafcnWuge0rLRsna2NRL513fDL6d5EoXyVI2iaykhoja2vg4sSKq9vfus0eFst88Uj3rysnxbzDZYRoQxnoYJSJ4QRIEWiSCE5FBmUMTBGeRRCLNNEFZQRVkKsEt691K1DpiToqIjCaTAbfKWz3jtdisaZA7iToET0OYk-JzHm1AF3A9CAl1CVDmpp_Eh1V1Mes17HB923qfTpH1fxutvN_97AA2t8q48jC-5TJGmYxmL_vBZbxnfbbL0S-_AH1KeK9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</title><source>Access via Wiley Online Library</source><creator>Ogo, Yoichi ; Hiramatsu, Hidenori ; Nomura, Kenji ; Yanagi, Hiroshi ; Kamiya, Toshio ; Kimura, Mutsumi ; Hirano, Masahiro ; Hosono, Hideo</creator><creatorcontrib>Ogo, Yoichi ; Hiramatsu, Hidenori ; Nomura, Kenji ; Yanagi, Hiroshi ; Kamiya, Toshio ; Kimura, Mutsumi ; Hirano, Masahiro ; Hosono, Hideo</creatorcontrib><description>Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is &gt;1019 cm−3, which limits the TFT mobilities and the S values.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.200881792</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>73.50.-h ; 78.55.Qr ; 82.80.Pv ; 85.30.-z ; Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electrical properties of specific thin films ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Other inorganic semiconductors ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thin films and multilayers ; Transistors</subject><ispartof>Physica status solidi. A, Applications and materials science, 2009-09, Vol.206 (9), p.2187-2191</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</citedby><cites>FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.200881792$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.200881792$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21979522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogo, Yoichi</creatorcontrib><creatorcontrib>Hiramatsu, Hidenori</creatorcontrib><creatorcontrib>Nomura, Kenji</creatorcontrib><creatorcontrib>Yanagi, Hiroshi</creatorcontrib><creatorcontrib>Kamiya, Toshio</creatorcontrib><creatorcontrib>Kimura, Mutsumi</creatorcontrib><creatorcontrib>Hirano, Masahiro</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><title>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>phys. stat. sol. (a)</addtitle><description>Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is &gt;1019 cm−3, which limits the TFT mobilities and the S values.</description><subject>73.50.-h</subject><subject>78.55.Qr</subject><subject>82.80.Pv</subject><subject>85.30.-z</subject><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electrical properties of specific thin films</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Other inorganic semiconductors</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thin films and multilayers</subject><subject>Transistors</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxSMEEqWwMnthdLGdT7NVVVuQKqBqUEfrYjvCkMaRHUT735MoKGJjutPd-73TvSC4pWRGCWH3jfcwY4RkGU05OwsmNEsYTkLKz8eekMvgyvsPQqI4SukkeM9NjQ62tkejNAKPoEYeW1eYFipcgNcKNbg9NRoNEq8PRtpafcnWuge0rLRsna2NRL513fDL6d5EoXyVI2iaykhoja2vg4sSKq9vfus0eFst88Uj3rysnxbzDZYRoQxnoYJSJ4QRIEWiSCE5FBmUMTBGeRRCLNNEFZQRVkKsEt691K1DpiToqIjCaTAbfKWz3jtdisaZA7iToET0OYk-JzHm1AF3A9CAl1CVDmpp_Eh1V1Mes17HB923qfTpH1fxutvN_97AA2t8q48jC-5TJGmYxmL_vBZbxnfbbL0S-_AH1KeK9g</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Ogo, Yoichi</creator><creator>Hiramatsu, Hidenori</creator><creator>Nomura, Kenji</creator><creator>Yanagi, Hiroshi</creator><creator>Kamiya, Toshio</creator><creator>Kimura, Mutsumi</creator><creator>Hirano, Masahiro</creator><creator>Hosono, Hideo</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200909</creationdate><title>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</title><author>Ogo, Yoichi ; Hiramatsu, Hidenori ; Nomura, Kenji ; Yanagi, Hiroshi ; Kamiya, Toshio ; Kimura, Mutsumi ; Hirano, Masahiro ; Hosono, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>73.50.-h</topic><topic>78.55.Qr</topic><topic>82.80.Pv</topic><topic>85.30.-z</topic><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electrical properties of specific thin films</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Other inorganic semiconductors</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thin films and multilayers</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogo, Yoichi</creatorcontrib><creatorcontrib>Hiramatsu, Hidenori</creatorcontrib><creatorcontrib>Nomura, Kenji</creatorcontrib><creatorcontrib>Yanagi, Hiroshi</creatorcontrib><creatorcontrib>Kamiya, Toshio</creatorcontrib><creatorcontrib>Kimura, Mutsumi</creatorcontrib><creatorcontrib>Hirano, Masahiro</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogo, Yoichi</au><au>Hiramatsu, Hidenori</au><au>Nomura, Kenji</au><au>Yanagi, Hiroshi</au><au>Kamiya, Toshio</au><au>Kimura, Mutsumi</au><au>Hirano, Masahiro</au><au>Hosono, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>phys. stat. sol. (a)</addtitle><date>2009-09</date><risdate>2009</risdate><volume>206</volume><issue>9</issue><spage>2187</spage><epage>2191</epage><pages>2187-2191</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is &gt;1019 cm−3, which limits the TFT mobilities and the S values.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.200881792</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2009-09, Vol.206 (9), p.2187-2191
issn 1862-6300
1862-6319
language eng
recordid cdi_crossref_primary_10_1002_pssa_200881792
source Access via Wiley Online Library
subjects 73.50.-h
78.55.Qr
82.80.Pv
85.30.-z
Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electrical properties of specific thin films
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Other inorganic semiconductors
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Thin films and multilayers
Transistors
title Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20monoxide%20as%20an%20s-orbital-based%20p-type%20oxide%20semiconductor:%20Electronic%20structures%20and%20TFT%20application&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Ogo,%20Yoichi&rft.date=2009-09&rft.volume=206&rft.issue=9&rft.spage=2187&rft.epage=2191&rft.pages=2187-2191&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.200881792&rft_dat=%3Cistex_cross%3Eark_67375_WNG_Q29SQ8GF_W%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true