Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application
Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 ...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2009-09, Vol.206 (9), p.2187-2191 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2191 |
---|---|
container_issue | 9 |
container_start_page | 2187 |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 206 |
creator | Ogo, Yoichi Hiramatsu, Hidenori Nomura, Kenji Yanagi, Hiroshi Kamiya, Toshio Kimura, Mutsumi Hirano, Masahiro Hosono, Hideo |
description | Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is >1019 cm−3, which limits the TFT mobilities and the S values. |
doi_str_mv | 10.1002/pssa.200881792 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_200881792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_Q29SQ8GF_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxSMEEqWwMnthdLGdT7NVVVuQKqBqUEfrYjvCkMaRHUT735MoKGJjutPd-73TvSC4pWRGCWH3jfcwY4RkGU05OwsmNEsYTkLKz8eekMvgyvsPQqI4SukkeM9NjQ62tkejNAKPoEYeW1eYFipcgNcKNbg9NRoNEq8PRtpafcnWuge0rLRsna2NRL513fDL6d5EoXyVI2iaykhoja2vg4sSKq9vfus0eFst88Uj3rysnxbzDZYRoQxnoYJSJ4QRIEWiSCE5FBmUMTBGeRRCLNNEFZQRVkKsEt691K1DpiToqIjCaTAbfKWz3jtdisaZA7iToET0OYk-JzHm1AF3A9CAl1CVDmpp_Eh1V1Mes17HB923qfTpH1fxutvN_97AA2t8q48jC-5TJGmYxmL_vBZbxnfbbL0S-_AH1KeK9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</title><source>Access via Wiley Online Library</source><creator>Ogo, Yoichi ; Hiramatsu, Hidenori ; Nomura, Kenji ; Yanagi, Hiroshi ; Kamiya, Toshio ; Kimura, Mutsumi ; Hirano, Masahiro ; Hosono, Hideo</creator><creatorcontrib>Ogo, Yoichi ; Hiramatsu, Hidenori ; Nomura, Kenji ; Yanagi, Hiroshi ; Kamiya, Toshio ; Kimura, Mutsumi ; Hirano, Masahiro ; Hosono, Hideo</creatorcontrib><description>Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is >1019 cm−3, which limits the TFT mobilities and the S values.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.200881792</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>73.50.-h ; 78.55.Qr ; 82.80.Pv ; 85.30.-z ; Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electrical properties of specific thin films ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Other inorganic semiconductors ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thin films and multilayers ; Transistors</subject><ispartof>Physica status solidi. A, Applications and materials science, 2009-09, Vol.206 (9), p.2187-2191</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</citedby><cites>FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.200881792$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.200881792$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21979522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogo, Yoichi</creatorcontrib><creatorcontrib>Hiramatsu, Hidenori</creatorcontrib><creatorcontrib>Nomura, Kenji</creatorcontrib><creatorcontrib>Yanagi, Hiroshi</creatorcontrib><creatorcontrib>Kamiya, Toshio</creatorcontrib><creatorcontrib>Kimura, Mutsumi</creatorcontrib><creatorcontrib>Hirano, Masahiro</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><title>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>phys. stat. sol. (a)</addtitle><description>Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is >1019 cm−3, which limits the TFT mobilities and the S values.</description><subject>73.50.-h</subject><subject>78.55.Qr</subject><subject>82.80.Pv</subject><subject>85.30.-z</subject><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electrical properties of specific thin films</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Other inorganic semiconductors</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thin films and multilayers</subject><subject>Transistors</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxSMEEqWwMnthdLGdT7NVVVuQKqBqUEfrYjvCkMaRHUT735MoKGJjutPd-73TvSC4pWRGCWH3jfcwY4RkGU05OwsmNEsYTkLKz8eekMvgyvsPQqI4SukkeM9NjQ62tkejNAKPoEYeW1eYFipcgNcKNbg9NRoNEq8PRtpafcnWuge0rLRsna2NRL513fDL6d5EoXyVI2iaykhoja2vg4sSKq9vfus0eFst88Uj3rysnxbzDZYRoQxnoYJSJ4QRIEWiSCE5FBmUMTBGeRRCLNNEFZQRVkKsEt691K1DpiToqIjCaTAbfKWz3jtdisaZA7iToET0OYk-JzHm1AF3A9CAl1CVDmpp_Eh1V1Mes17HB923qfTpH1fxutvN_97AA2t8q48jC-5TJGmYxmL_vBZbxnfbbL0S-_AH1KeK9g</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Ogo, Yoichi</creator><creator>Hiramatsu, Hidenori</creator><creator>Nomura, Kenji</creator><creator>Yanagi, Hiroshi</creator><creator>Kamiya, Toshio</creator><creator>Kimura, Mutsumi</creator><creator>Hirano, Masahiro</creator><creator>Hosono, Hideo</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200909</creationdate><title>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</title><author>Ogo, Yoichi ; Hiramatsu, Hidenori ; Nomura, Kenji ; Yanagi, Hiroshi ; Kamiya, Toshio ; Kimura, Mutsumi ; Hirano, Masahiro ; Hosono, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4012-83dafe6020a0b6d0bc9ab8af5a221943a5c76db1202fa5d693008af32dcae4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>73.50.-h</topic><topic>78.55.Qr</topic><topic>82.80.Pv</topic><topic>85.30.-z</topic><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electrical properties of specific thin films</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Other inorganic semiconductors</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thin films and multilayers</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogo, Yoichi</creatorcontrib><creatorcontrib>Hiramatsu, Hidenori</creatorcontrib><creatorcontrib>Nomura, Kenji</creatorcontrib><creatorcontrib>Yanagi, Hiroshi</creatorcontrib><creatorcontrib>Kamiya, Toshio</creatorcontrib><creatorcontrib>Kimura, Mutsumi</creatorcontrib><creatorcontrib>Hirano, Masahiro</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogo, Yoichi</au><au>Hiramatsu, Hidenori</au><au>Nomura, Kenji</au><au>Yanagi, Hiroshi</au><au>Kamiya, Toshio</au><au>Kimura, Mutsumi</au><au>Hirano, Masahiro</au><au>Hosono, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>phys. stat. sol. (a)</addtitle><date>2009-09</date><risdate>2009</risdate><volume>206</volume><issue>9</issue><spage>2187</spage><epage>2191</epage><pages>2187-2191</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Tin monoxide (SnO) is a stable p‐type oxide semiconductor. This paper reports electrical properties, electronic structures, and thin‐film transistors (TFTs) of SnO. Epitaxial films were fabricated by pulsed laser deposition. The Hall mobility and the hole density of the epitaxial films were 2.4 cm2 V−1 s−1 and 2.5 × 1017, respectively. X‐ray photoelectron spectroscopy (PES) indicated that the closed‐shell 5s2 orbitals of Sn2+ ions heavily contribute to the hole conduction path in SnO. Top gate type TFTs (W/L = 300/50 µm) employing 20 nm thick SnO channels exhibited field‐effect mobilities µsat = 0.7 cm2 V−1 s−1 and µlin = 1.3 cm2 V−1 s−1, which are larger by two orders of magnitude than those reported for p‐channel oxide TFTs to date. On/off current ratios were ∼102 and subthreshold voltage swings (S) ∼7 V/decade. The parameters required for TFT simulations were estimated by ultraviolet PES and first‐principles calculations. The TFT simulations indicated that subgap hole trap density in the SnO channel is >1019 cm−3, which limits the TFT mobilities and the S values.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.200881792</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2009-09, Vol.206 (9), p.2187-2191 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssa_200881792 |
source | Access via Wiley Online Library |
subjects | 73.50.-h 78.55.Qr 82.80.Pv 85.30.-z Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Electrical properties of specific thin films Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Exact sciences and technology Other inorganic semiconductors Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Thin films and multilayers Transistors |
title | Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20monoxide%20as%20an%20s-orbital-based%20p-type%20oxide%20semiconductor:%20Electronic%20structures%20and%20TFT%20application&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Ogo,%20Yoichi&rft.date=2009-09&rft.volume=206&rft.issue=9&rft.spage=2187&rft.epage=2191&rft.pages=2187-2191&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.200881792&rft_dat=%3Cistex_cross%3Eark_67375_WNG_Q29SQ8GF_W%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |