Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films

Thin films of potassium lithium niobate (K3Li2Nb5O15: KLN) have been prepared on glass substrate, as a function of substrate temperature, using a pulsed laser‐deposition (PLD) technique for the first time. Grazing‐incidence X‐ray diffraction (GIXRD) analysis suggests that KLN films can be grown succ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2009-12, Vol.206 (12), p.2801-2808
Hauptverfasser: Jayasree, V., Ratheesh, R., Rao, P. Prabhakar, Koshy, Peter, Ganesan, V., Nayar, V. U., Pillai, V. P. Mahadevan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2808
container_issue 12
container_start_page 2801
container_title Physica status solidi. A, Applications and materials science
container_volume 206
creator Jayasree, V.
Ratheesh, R.
Rao, P. Prabhakar
Koshy, Peter
Ganesan, V.
Nayar, V. U.
Pillai, V. P. Mahadevan
description Thin films of potassium lithium niobate (K3Li2Nb5O15: KLN) have been prepared on glass substrate, as a function of substrate temperature, using a pulsed laser‐deposition (PLD) technique for the first time. Grazing‐incidence X‐ray diffraction (GIXRD) analysis suggests that KLN films can be grown successfully at a substrate temperature as low as 300 K. The anomalous behavior of the decline of crystalline structure with increase in substrate temperature is explained. The atomic force microscopic (AFM) and scanning electron microscopic (SEM) images show an agglomerated growth mode for the films deposited at a substrate temperature of 300 K and a decrease in grain size with increase in substrate temperature. The films deposited at higher substrate temperatures show ring‐like structures. The AFM analysis shows that the rms surface roughness of the film decrease with increase in substrate temperature. The UV–Vis transmission spectra suggest that the nature of the transition in the films is directly allowed. A blue shift in optical bandgap is observed for the films compared to bulk material. The changes in the optical bandgap with substrate temperature are also discussed.
doi_str_mv 10.1002/pssa.200824220
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssa_200824220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSA200824220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-2c29bacdca65d12816585633801580cd724c3a87994d15806b6d6beb973ba5ee3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhYMoWKtb19m4TJ1H5pFlFW2VokIVwc1wM5nQ0TQJMxO0_noTIsWdq_v8zuWeKDrHaIYRIpet9zAjCEmSEoIOogmWnCSc4uxwnyN0HJ14_45QylKBJ1GxDq7ToXNQxVAXcdMGq_tcb8CBDsbZbwi2qeOmjNuu8qaIK_DGJZBXEPqqbQJ4b7ttXNmwGWJtm7wfxX1Vx6Wttv40OiqhZ89-4zR6ub15vl4mq8fF3fV8lWjKBEqIJlkOutDAWYGJxJxJximVCDOJdCFIqilIkWVpMXR4zguemzwTNAdmDJ1Gs1FXu8Z7Z0rVOrsFt1MYqcEjNXik9h71wMUItOD7r0sHtbZ-TxFCBOEM93vZuPdpK7P7R1U9rdfzvzeSkbU-mK89C-5DcUEFU68PC3W_vMJvKyFVSn8A6QSJOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films</title><source>Access via Wiley Online Library</source><creator>Jayasree, V. ; Ratheesh, R. ; Rao, P. Prabhakar ; Koshy, Peter ; Ganesan, V. ; Nayar, V. U. ; Pillai, V. P. Mahadevan</creator><creatorcontrib>Jayasree, V. ; Ratheesh, R. ; Rao, P. Prabhakar ; Koshy, Peter ; Ganesan, V. ; Nayar, V. U. ; Pillai, V. P. Mahadevan</creatorcontrib><description>Thin films of potassium lithium niobate (K3Li2Nb5O15: KLN) have been prepared on glass substrate, as a function of substrate temperature, using a pulsed laser‐deposition (PLD) technique for the first time. Grazing‐incidence X‐ray diffraction (GIXRD) analysis suggests that KLN films can be grown successfully at a substrate temperature as low as 300 K. The anomalous behavior of the decline of crystalline structure with increase in substrate temperature is explained. The atomic force microscopic (AFM) and scanning electron microscopic (SEM) images show an agglomerated growth mode for the films deposited at a substrate temperature of 300 K and a decrease in grain size with increase in substrate temperature. The films deposited at higher substrate temperatures show ring‐like structures. The AFM analysis shows that the rms surface roughness of the film decrease with increase in substrate temperature. The UV–Vis transmission spectra suggest that the nature of the transition in the films is directly allowed. A blue shift in optical bandgap is observed for the films compared to bulk material. The changes in the optical bandgap with substrate temperature are also discussed.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.200824220</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>42.70.Mp ; 61.05.cp ; 68.37.Hk ; 68.37.Ps ; 68.55.-a ; 81.15.Fg ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Insulators ; Laser deposition ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Physics ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Physica status solidi. A, Applications and materials science, 2009-12, Vol.206 (12), p.2801-2808</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-2c29bacdca65d12816585633801580cd724c3a87994d15806b6d6beb973ba5ee3</citedby><cites>FETCH-LOGICAL-c3570-2c29bacdca65d12816585633801580cd724c3a87994d15806b6d6beb973ba5ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.200824220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.200824220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22272651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayasree, V.</creatorcontrib><creatorcontrib>Ratheesh, R.</creatorcontrib><creatorcontrib>Rao, P. Prabhakar</creatorcontrib><creatorcontrib>Koshy, Peter</creatorcontrib><creatorcontrib>Ganesan, V.</creatorcontrib><creatorcontrib>Nayar, V. U.</creatorcontrib><creatorcontrib>Pillai, V. P. Mahadevan</creatorcontrib><title>Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>phys. stat. sol. (a)</addtitle><description>Thin films of potassium lithium niobate (K3Li2Nb5O15: KLN) have been prepared on glass substrate, as a function of substrate temperature, using a pulsed laser‐deposition (PLD) technique for the first time. Grazing‐incidence X‐ray diffraction (GIXRD) analysis suggests that KLN films can be grown successfully at a substrate temperature as low as 300 K. The anomalous behavior of the decline of crystalline structure with increase in substrate temperature is explained. The atomic force microscopic (AFM) and scanning electron microscopic (SEM) images show an agglomerated growth mode for the films deposited at a substrate temperature of 300 K and a decrease in grain size with increase in substrate temperature. The films deposited at higher substrate temperatures show ring‐like structures. The AFM analysis shows that the rms surface roughness of the film decrease with increase in substrate temperature. The UV–Vis transmission spectra suggest that the nature of the transition in the films is directly allowed. A blue shift in optical bandgap is observed for the films compared to bulk material. The changes in the optical bandgap with substrate temperature are also discussed.</description><subject>42.70.Mp</subject><subject>61.05.cp</subject><subject>68.37.Hk</subject><subject>68.37.Ps</subject><subject>68.55.-a</subject><subject>81.15.Fg</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Insulators</subject><subject>Laser deposition</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Physics</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhYMoWKtb19m4TJ1H5pFlFW2VokIVwc1wM5nQ0TQJMxO0_noTIsWdq_v8zuWeKDrHaIYRIpet9zAjCEmSEoIOogmWnCSc4uxwnyN0HJ14_45QylKBJ1GxDq7ToXNQxVAXcdMGq_tcb8CBDsbZbwi2qeOmjNuu8qaIK_DGJZBXEPqqbQJ4b7ttXNmwGWJtm7wfxX1Vx6Wttv40OiqhZ89-4zR6ub15vl4mq8fF3fV8lWjKBEqIJlkOutDAWYGJxJxJximVCDOJdCFIqilIkWVpMXR4zguemzwTNAdmDJ1Gs1FXu8Z7Z0rVOrsFt1MYqcEjNXik9h71wMUItOD7r0sHtbZ-TxFCBOEM93vZuPdpK7P7R1U9rdfzvzeSkbU-mK89C-5DcUEFU68PC3W_vMJvKyFVSn8A6QSJOw</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Jayasree, V.</creator><creator>Ratheesh, R.</creator><creator>Rao, P. Prabhakar</creator><creator>Koshy, Peter</creator><creator>Ganesan, V.</creator><creator>Nayar, V. U.</creator><creator>Pillai, V. P. Mahadevan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200912</creationdate><title>Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films</title><author>Jayasree, V. ; Ratheesh, R. ; Rao, P. Prabhakar ; Koshy, Peter ; Ganesan, V. ; Nayar, V. U. ; Pillai, V. P. Mahadevan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-2c29bacdca65d12816585633801580cd724c3a87994d15806b6d6beb973ba5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>42.70.Mp</topic><topic>61.05.cp</topic><topic>68.37.Hk</topic><topic>68.37.Ps</topic><topic>68.55.-a</topic><topic>81.15.Fg</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Insulators</topic><topic>Laser deposition</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Physics</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayasree, V.</creatorcontrib><creatorcontrib>Ratheesh, R.</creatorcontrib><creatorcontrib>Rao, P. Prabhakar</creatorcontrib><creatorcontrib>Koshy, Peter</creatorcontrib><creatorcontrib>Ganesan, V.</creatorcontrib><creatorcontrib>Nayar, V. U.</creatorcontrib><creatorcontrib>Pillai, V. P. Mahadevan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayasree, V.</au><au>Ratheesh, R.</au><au>Rao, P. Prabhakar</au><au>Koshy, Peter</au><au>Ganesan, V.</au><au>Nayar, V. U.</au><au>Pillai, V. P. Mahadevan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>phys. stat. sol. (a)</addtitle><date>2009-12</date><risdate>2009</risdate><volume>206</volume><issue>12</issue><spage>2801</spage><epage>2808</epage><pages>2801-2808</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Thin films of potassium lithium niobate (K3Li2Nb5O15: KLN) have been prepared on glass substrate, as a function of substrate temperature, using a pulsed laser‐deposition (PLD) technique for the first time. Grazing‐incidence X‐ray diffraction (GIXRD) analysis suggests that KLN films can be grown successfully at a substrate temperature as low as 300 K. The anomalous behavior of the decline of crystalline structure with increase in substrate temperature is explained. The atomic force microscopic (AFM) and scanning electron microscopic (SEM) images show an agglomerated growth mode for the films deposited at a substrate temperature of 300 K and a decrease in grain size with increase in substrate temperature. The films deposited at higher substrate temperatures show ring‐like structures. The AFM analysis shows that the rms surface roughness of the film decrease with increase in substrate temperature. The UV–Vis transmission spectra suggest that the nature of the transition in the films is directly allowed. A blue shift in optical bandgap is observed for the films compared to bulk material. The changes in the optical bandgap with substrate temperature are also discussed.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.200824220</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2009-12, Vol.206 (12), p.2801-2808
issn 1862-6300
1862-6319
language eng
recordid cdi_crossref_primary_10_1002_pssa_200824220
source Access via Wiley Online Library
subjects 42.70.Mp
61.05.cp
68.37.Hk
68.37.Ps
68.55.-a
81.15.Fg
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Insulators
Laser deposition
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of specific thin films
Physics
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
title Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20optical%20characterization%20of%20pulsed%20laser-ablated%20potassium%20lithium%20niobate%20thin%20films&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Jayasree,%20V.&rft.date=2009-12&rft.volume=206&rft.issue=12&rft.spage=2801&rft.epage=2808&rft.pages=2801-2808&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.200824220&rft_dat=%3Cwiley_cross%3EPSSA200824220%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true