Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice

BACKGROUND TNF‐α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF‐α receptor type 1 (TNFR‐1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Prostate 2016-07, Vol.76 (10), p.917-926
Hauptverfasser: Galheigo, Maria Raquel Unterkircher, Cruz, Amanda Rodrigues, Cabral, Ágata Silva, Faria, Paulo Rogério, Cordeiro, Renato Simões, Silva, Marcelo José Barbosa, Tomiosso, Tatiana Carla, Gonçalves, Bianca Fachim, Pinto-Fochi, Maria Etelvina, Taboga, Sebastião Roberto, Góes, Rejane Maira, Ribeiro, Daniele Lisboa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue 10
container_start_page 917
container_title The Prostate
container_volume 76
creator Galheigo, Maria Raquel Unterkircher
Cruz, Amanda Rodrigues
Cabral, Ágata Silva
Faria, Paulo Rogério
Cordeiro, Renato Simões
Silva, Marcelo José Barbosa
Tomiosso, Tatiana Carla
Gonçalves, Bianca Fachim
Pinto-Fochi, Maria Etelvina
Taboga, Sebastião Roberto
Góes, Rejane Maira
Ribeiro, Daniele Lisboa
description BACKGROUND TNF‐α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF‐α receptor type 1 (TNFR‐1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. METHODS C57bl/6 wild type (WT) and p55 TNFR‐1 knockout mice (KO) were treated with mineral oil (control) or N‐methyl N‐nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. RESULTS MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p‐mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. CONCLUSIONS TNF‐α, through its receptor TNFR‐1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917–926, 2016. © 2016 Wiley Periodicals, Inc.
doi_str_mv 10.1002/pros.23181
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pros_23181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_P09K9M2F_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3671-90f853f3b654629f88e5b7439884dc17570832861b208fc05e816e456dcebbd63</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqVw4QGQz0gpazuxnSOqaEH0T6WIo5W4GwhtkyhOBX0sXoRnIiW0R04rjb6ZHQ0hlwy6DIDfFGXuulwwzY5Im0GoPAA_OCZt4Ao8nwnVImfOvQPUOPBT0qp1ppXUbTKe5SukeUKrN6Tzcd_7_qIlWiyqvKTVtkDKaJ7R3YsqqpDaqLRplr9ihi51NM3oMsvtMt9UdJ1aPCcnSbRyePF3O-S5fzfv3XvDyeChdzv0rJCKeSEkOhCJiGXgSx4mWmMQK1-EWvsLy1SgQAuuJYs56MRCgJpJ9AO5sBjHCyk65LrJtXUxV2JiijJdR-XWMDC7UcyusfkdpYavGrjYxGtcHND9CjXAGuAjXeH2nygznU2e9qFe40ldhZ8HT1QujVRCBeZlPDBTCB_DEe-bkfgBgQd7Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Galheigo, Maria Raquel Unterkircher ; Cruz, Amanda Rodrigues ; Cabral, Ágata Silva ; Faria, Paulo Rogério ; Cordeiro, Renato Simões ; Silva, Marcelo José Barbosa ; Tomiosso, Tatiana Carla ; Gonçalves, Bianca Fachim ; Pinto-Fochi, Maria Etelvina ; Taboga, Sebastião Roberto ; Góes, Rejane Maira ; Ribeiro, Daniele Lisboa</creator><creatorcontrib>Galheigo, Maria Raquel Unterkircher ; Cruz, Amanda Rodrigues ; Cabral, Ágata Silva ; Faria, Paulo Rogério ; Cordeiro, Renato Simões ; Silva, Marcelo José Barbosa ; Tomiosso, Tatiana Carla ; Gonçalves, Bianca Fachim ; Pinto-Fochi, Maria Etelvina ; Taboga, Sebastião Roberto ; Góes, Rejane Maira ; Ribeiro, Daniele Lisboa</creatorcontrib><description>BACKGROUND TNF‐α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF‐α receptor type 1 (TNFR‐1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. METHODS C57bl/6 wild type (WT) and p55 TNFR‐1 knockout mice (KO) were treated with mineral oil (control) or N‐methyl N‐nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. RESULTS MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p‐mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. CONCLUSIONS TNF‐α, through its receptor TNFR‐1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917–926, 2016. © 2016 Wiley Periodicals, Inc.</description><identifier>ISSN: 0270-4137</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.23181</identifier><identifier>PMID: 27018768</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenocarcinoma - pathology ; AKT/mTOR ; Animals ; Apoptosis ; carcinogenesis ; Carcinogenesis - pathology ; Cell Proliferation ; Cell Survival ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NF-kappa B - metabolism ; Proliferating Cell Nuclear Antigen - analysis ; prostate ; Prostatic Intraepithelial Neoplasia - pathology ; Prostatic Neoplasms - chemistry ; Prostatic Neoplasms - pathology ; Proto-Oncogene Proteins c-akt - metabolism ; Receptors, Androgen - analysis ; Receptors, Tumor Necrosis Factor, Type I - deficiency ; Receptors, Tumor Necrosis Factor, Type I - genetics ; Receptors, Tumor Necrosis Factor, Type I - physiology ; TNF-α ; TNFR-1 ; TOR Serine-Threonine Kinases - analysis ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factor RelA - analysis ; Tumor Necrosis Factor-alpha - physiology</subject><ispartof>The Prostate, 2016-07, Vol.76 (10), p.917-926</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3671-90f853f3b654629f88e5b7439884dc17570832861b208fc05e816e456dcebbd63</citedby><cites>FETCH-LOGICAL-c3671-90f853f3b654629f88e5b7439884dc17570832861b208fc05e816e456dcebbd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpros.23181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpros.23181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27018768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galheigo, Maria Raquel Unterkircher</creatorcontrib><creatorcontrib>Cruz, Amanda Rodrigues</creatorcontrib><creatorcontrib>Cabral, Ágata Silva</creatorcontrib><creatorcontrib>Faria, Paulo Rogério</creatorcontrib><creatorcontrib>Cordeiro, Renato Simões</creatorcontrib><creatorcontrib>Silva, Marcelo José Barbosa</creatorcontrib><creatorcontrib>Tomiosso, Tatiana Carla</creatorcontrib><creatorcontrib>Gonçalves, Bianca Fachim</creatorcontrib><creatorcontrib>Pinto-Fochi, Maria Etelvina</creatorcontrib><creatorcontrib>Taboga, Sebastião Roberto</creatorcontrib><creatorcontrib>Góes, Rejane Maira</creatorcontrib><creatorcontrib>Ribeiro, Daniele Lisboa</creatorcontrib><title>Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>BACKGROUND TNF‐α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF‐α receptor type 1 (TNFR‐1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. METHODS C57bl/6 wild type (WT) and p55 TNFR‐1 knockout mice (KO) were treated with mineral oil (control) or N‐methyl N‐nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. RESULTS MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p‐mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. CONCLUSIONS TNF‐α, through its receptor TNFR‐1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917–926, 2016. © 2016 Wiley Periodicals, Inc.</description><subject>Adenocarcinoma - pathology</subject><subject>AKT/mTOR</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>carcinogenesis</subject><subject>Carcinogenesis - pathology</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>NF-kappa B - metabolism</subject><subject>Proliferating Cell Nuclear Antigen - analysis</subject><subject>prostate</subject><subject>Prostatic Intraepithelial Neoplasia - pathology</subject><subject>Prostatic Neoplasms - chemistry</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Receptors, Androgen - analysis</subject><subject>Receptors, Tumor Necrosis Factor, Type I - deficiency</subject><subject>Receptors, Tumor Necrosis Factor, Type I - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type I - physiology</subject><subject>TNF-α</subject><subject>TNFR-1</subject><subject>TOR Serine-Threonine Kinases - analysis</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factor RelA - analysis</subject><subject>Tumor Necrosis Factor-alpha - physiology</subject><issn>0270-4137</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqVw4QGQz0gpazuxnSOqaEH0T6WIo5W4GwhtkyhOBX0sXoRnIiW0R04rjb6ZHQ0hlwy6DIDfFGXuulwwzY5Im0GoPAA_OCZt4Ao8nwnVImfOvQPUOPBT0qp1ppXUbTKe5SukeUKrN6Tzcd_7_qIlWiyqvKTVtkDKaJ7R3YsqqpDaqLRplr9ihi51NM3oMsvtMt9UdJ1aPCcnSbRyePF3O-S5fzfv3XvDyeChdzv0rJCKeSEkOhCJiGXgSx4mWmMQK1-EWvsLy1SgQAuuJYs56MRCgJpJ9AO5sBjHCyk65LrJtXUxV2JiijJdR-XWMDC7UcyusfkdpYavGrjYxGtcHND9CjXAGuAjXeH2nygznU2e9qFe40ldhZ8HT1QujVRCBeZlPDBTCB_DEe-bkfgBgQd7Mg</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Galheigo, Maria Raquel Unterkircher</creator><creator>Cruz, Amanda Rodrigues</creator><creator>Cabral, Ágata Silva</creator><creator>Faria, Paulo Rogério</creator><creator>Cordeiro, Renato Simões</creator><creator>Silva, Marcelo José Barbosa</creator><creator>Tomiosso, Tatiana Carla</creator><creator>Gonçalves, Bianca Fachim</creator><creator>Pinto-Fochi, Maria Etelvina</creator><creator>Taboga, Sebastião Roberto</creator><creator>Góes, Rejane Maira</creator><creator>Ribeiro, Daniele Lisboa</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201607</creationdate><title>Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice</title><author>Galheigo, Maria Raquel Unterkircher ; Cruz, Amanda Rodrigues ; Cabral, Ágata Silva ; Faria, Paulo Rogério ; Cordeiro, Renato Simões ; Silva, Marcelo José Barbosa ; Tomiosso, Tatiana Carla ; Gonçalves, Bianca Fachim ; Pinto-Fochi, Maria Etelvina ; Taboga, Sebastião Roberto ; Góes, Rejane Maira ; Ribeiro, Daniele Lisboa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3671-90f853f3b654629f88e5b7439884dc17570832861b208fc05e816e456dcebbd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenocarcinoma - pathology</topic><topic>AKT/mTOR</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>carcinogenesis</topic><topic>Carcinogenesis - pathology</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>NF-kappa B - metabolism</topic><topic>Proliferating Cell Nuclear Antigen - analysis</topic><topic>prostate</topic><topic>Prostatic Intraepithelial Neoplasia - pathology</topic><topic>Prostatic Neoplasms - chemistry</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Receptors, Androgen - analysis</topic><topic>Receptors, Tumor Necrosis Factor, Type I - deficiency</topic><topic>Receptors, Tumor Necrosis Factor, Type I - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type I - physiology</topic><topic>TNF-α</topic><topic>TNFR-1</topic><topic>TOR Serine-Threonine Kinases - analysis</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factor RelA - analysis</topic><topic>Tumor Necrosis Factor-alpha - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galheigo, Maria Raquel Unterkircher</creatorcontrib><creatorcontrib>Cruz, Amanda Rodrigues</creatorcontrib><creatorcontrib>Cabral, Ágata Silva</creatorcontrib><creatorcontrib>Faria, Paulo Rogério</creatorcontrib><creatorcontrib>Cordeiro, Renato Simões</creatorcontrib><creatorcontrib>Silva, Marcelo José Barbosa</creatorcontrib><creatorcontrib>Tomiosso, Tatiana Carla</creatorcontrib><creatorcontrib>Gonçalves, Bianca Fachim</creatorcontrib><creatorcontrib>Pinto-Fochi, Maria Etelvina</creatorcontrib><creatorcontrib>Taboga, Sebastião Roberto</creatorcontrib><creatorcontrib>Góes, Rejane Maira</creatorcontrib><creatorcontrib>Ribeiro, Daniele Lisboa</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galheigo, Maria Raquel Unterkircher</au><au>Cruz, Amanda Rodrigues</au><au>Cabral, Ágata Silva</au><au>Faria, Paulo Rogério</au><au>Cordeiro, Renato Simões</au><au>Silva, Marcelo José Barbosa</au><au>Tomiosso, Tatiana Carla</au><au>Gonçalves, Bianca Fachim</au><au>Pinto-Fochi, Maria Etelvina</au><au>Taboga, Sebastião Roberto</au><au>Góes, Rejane Maira</au><au>Ribeiro, Daniele Lisboa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2016-07</date><risdate>2016</risdate><volume>76</volume><issue>10</issue><spage>917</spage><epage>926</epage><pages>917-926</pages><issn>0270-4137</issn><eissn>1097-0045</eissn><abstract>BACKGROUND TNF‐α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF‐α receptor type 1 (TNFR‐1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. METHODS C57bl/6 wild type (WT) and p55 TNFR‐1 knockout mice (KO) were treated with mineral oil (control) or N‐methyl N‐nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. RESULTS MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p‐mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. CONCLUSIONS TNF‐α, through its receptor TNFR‐1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917–926, 2016. © 2016 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27018768</pmid><doi>10.1002/pros.23181</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-4137
ispartof The Prostate, 2016-07, Vol.76 (10), p.917-926
issn 0270-4137
1097-0045
language eng
recordid cdi_crossref_primary_10_1002_pros_23181
source MEDLINE; Access via Wiley Online Library
subjects Adenocarcinoma - pathology
AKT/mTOR
Animals
Apoptosis
carcinogenesis
Carcinogenesis - pathology
Cell Proliferation
Cell Survival
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
NF-kappa B - metabolism
Proliferating Cell Nuclear Antigen - analysis
prostate
Prostatic Intraepithelial Neoplasia - pathology
Prostatic Neoplasms - chemistry
Prostatic Neoplasms - pathology
Proto-Oncogene Proteins c-akt - metabolism
Receptors, Androgen - analysis
Receptors, Tumor Necrosis Factor, Type I - deficiency
Receptors, Tumor Necrosis Factor, Type I - genetics
Receptors, Tumor Necrosis Factor, Type I - physiology
TNF-α
TNFR-1
TOR Serine-Threonine Kinases - analysis
TOR Serine-Threonine Kinases - metabolism
Transcription Factor RelA - analysis
Tumor Necrosis Factor-alpha - physiology
title Role of the TNF-α receptor type 1 on prostate carcinogenesis in knockout mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20TNF-%CE%B1%20receptor%20type%201%20on%20prostate%20carcinogenesis%20in%20knockout%20mice&rft.jtitle=The%20Prostate&rft.au=Galheigo,%20Maria%20Raquel%20Unterkircher&rft.date=2016-07&rft.volume=76&rft.issue=10&rft.spage=917&rft.epage=926&rft.pages=917-926&rft.issn=0270-4137&rft.eissn=1097-0045&rft_id=info:doi/10.1002/pros.23181&rft_dat=%3Cistex_cross%3Eark_67375_WNG_P09K9M2F_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27018768&rfr_iscdi=true