Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation

BACKGROUND Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Prostate 2010-06, Vol.70 (8), p.866-874
Hauptverfasser: Kobayashi, Takashi, Shimizu, Yosuke, Terada, Naoki, Yamasaki, Toshinari, Nakamura, Eijiro, Toda, Yoshinobu, Nishiyama, Hiroyuki, Kamoto, Toshiyuki, Ogawa, Osamu, Inoue, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 8
container_start_page 866
container_title The Prostate
container_volume 70
creator Kobayashi, Takashi
Shimizu, Yosuke
Terada, Naoki
Yamasaki, Toshinari
Nakamura, Eijiro
Toda, Yoshinobu
Nishiyama, Hiroyuki
Kamoto, Toshiyuki
Ogawa, Osamu
Inoue, Takahiro
description BACKGROUND Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. METHODS Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle. RESULTS Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. CONCLUSIONS Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/pros.21120
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pros_21120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PROS21120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxa2qVVn-XPgAyOdKoWM7sbNHhFoK3bLVLlCpF2vinYBLNokcw5Jv34QFjlw8luc3b54fY4cCjgWA_NqGpjuWQkj4wCYCpiYBSLOPbALSQJIKZXbYbtf9AxhwkJ_ZjgQhjVHphD0u6Pahwuibmjclx3oVmluqeSBHbWwCjwHrDl30jz72Y5-vr-aLZKn5va-xI95ivNtgz4ueL-6o4L7mo6GIkbjD2lHgjqpqfKx8SeF51z77VGLV0cFL3WPX379dnf5IZvOz89OTWeJSJSFxpTMop5gXU-0UjScZKklJ7TBdZZBhhoWGfPgLap3m-SrPgNJiuEihQO2xL1tdN1jqApW2DX6NobcC7BieHb3a5_AG-GgLtw_FmlZv6GtaAyC2wMZX1L8jZX8v5stX0WQ747tIT28zGO6tNspk9s_lmdU36a-f-u_SXqj_59eLSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kobayashi, Takashi ; Shimizu, Yosuke ; Terada, Naoki ; Yamasaki, Toshinari ; Nakamura, Eijiro ; Toda, Yoshinobu ; Nishiyama, Hiroyuki ; Kamoto, Toshiyuki ; Ogawa, Osamu ; Inoue, Takahiro</creator><creatorcontrib>Kobayashi, Takashi ; Shimizu, Yosuke ; Terada, Naoki ; Yamasaki, Toshinari ; Nakamura, Eijiro ; Toda, Yoshinobu ; Nishiyama, Hiroyuki ; Kamoto, Toshiyuki ; Ogawa, Osamu ; Inoue, Takahiro</creatorcontrib><description>BACKGROUND Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. METHODS Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle. RESULTS Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. CONCLUSIONS Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0270-4137</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.21120</identifier><identifier>PMID: 20127734</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Blotting, Western ; Cell Count ; Cell Cycle - physiology ; Cell Line, Tumor ; Cell Proliferation ; Flow Cytometry ; Humans ; Immunohistochemistry ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; kinase inhibitor ; Male ; molecular-target therapy ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Prostate - metabolism ; prostatic adenocarcinoma ; Prostatic Hyperplasia - genetics ; Prostatic Hyperplasia - metabolism ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Ras Homolog Enriched in Brain Protein ; Receptors, Androgen - genetics ; Receptors, Androgen - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; signal transduction ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases</subject><ispartof>The Prostate, 2010-06, Vol.70 (8), p.866-874</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</citedby><cites>FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpros.21120$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpros.21120$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20127734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Takashi</creatorcontrib><creatorcontrib>Shimizu, Yosuke</creatorcontrib><creatorcontrib>Terada, Naoki</creatorcontrib><creatorcontrib>Yamasaki, Toshinari</creatorcontrib><creatorcontrib>Nakamura, Eijiro</creatorcontrib><creatorcontrib>Toda, Yoshinobu</creatorcontrib><creatorcontrib>Nishiyama, Hiroyuki</creatorcontrib><creatorcontrib>Kamoto, Toshiyuki</creatorcontrib><creatorcontrib>Ogawa, Osamu</creatorcontrib><creatorcontrib>Inoue, Takahiro</creatorcontrib><title>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>BACKGROUND Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. METHODS Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle. RESULTS Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. CONCLUSIONS Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Blotting, Western</subject><subject>Cell Count</subject><subject>Cell Cycle - physiology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Flow Cytometry</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>kinase inhibitor</subject><subject>Male</subject><subject>molecular-target therapy</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Prostate - metabolism</subject><subject>prostatic adenocarcinoma</subject><subject>Prostatic Hyperplasia - genetics</subject><subject>Prostatic Hyperplasia - metabolism</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Ras Homolog Enriched in Brain Protein</subject><subject>Receptors, Androgen - genetics</subject><subject>Receptors, Androgen - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases</subject><issn>0270-4137</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9P3DAQxa2qVVn-XPgAyOdKoWM7sbNHhFoK3bLVLlCpF2vinYBLNokcw5Jv34QFjlw8luc3b54fY4cCjgWA_NqGpjuWQkj4wCYCpiYBSLOPbALSQJIKZXbYbtf9AxhwkJ_ZjgQhjVHphD0u6Pahwuibmjclx3oVmluqeSBHbWwCjwHrDl30jz72Y5-vr-aLZKn5va-xI95ivNtgz4ueL-6o4L7mo6GIkbjD2lHgjqpqfKx8SeF51z77VGLV0cFL3WPX379dnf5IZvOz89OTWeJSJSFxpTMop5gXU-0UjScZKklJ7TBdZZBhhoWGfPgLap3m-SrPgNJiuEihQO2xL1tdN1jqApW2DX6NobcC7BieHb3a5_AG-GgLtw_FmlZv6GtaAyC2wMZX1L8jZX8v5stX0WQ747tIT28zGO6tNspk9s_lmdU36a-f-u_SXqj_59eLSA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Kobayashi, Takashi</creator><creator>Shimizu, Yosuke</creator><creator>Terada, Naoki</creator><creator>Yamasaki, Toshinari</creator><creator>Nakamura, Eijiro</creator><creator>Toda, Yoshinobu</creator><creator>Nishiyama, Hiroyuki</creator><creator>Kamoto, Toshiyuki</creator><creator>Ogawa, Osamu</creator><creator>Inoue, Takahiro</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100601</creationdate><title>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</title><author>Kobayashi, Takashi ; Shimizu, Yosuke ; Terada, Naoki ; Yamasaki, Toshinari ; Nakamura, Eijiro ; Toda, Yoshinobu ; Nishiyama, Hiroyuki ; Kamoto, Toshiyuki ; Ogawa, Osamu ; Inoue, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Blotting, Western</topic><topic>Cell Count</topic><topic>Cell Cycle - physiology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Flow Cytometry</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>kinase inhibitor</topic><topic>Male</topic><topic>molecular-target therapy</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Prostate - metabolism</topic><topic>prostatic adenocarcinoma</topic><topic>Prostatic Hyperplasia - genetics</topic><topic>Prostatic Hyperplasia - metabolism</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Ras Homolog Enriched in Brain Protein</topic><topic>Receptors, Androgen - genetics</topic><topic>Receptors, Androgen - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Takashi</creatorcontrib><creatorcontrib>Shimizu, Yosuke</creatorcontrib><creatorcontrib>Terada, Naoki</creatorcontrib><creatorcontrib>Yamasaki, Toshinari</creatorcontrib><creatorcontrib>Nakamura, Eijiro</creatorcontrib><creatorcontrib>Toda, Yoshinobu</creatorcontrib><creatorcontrib>Nishiyama, Hiroyuki</creatorcontrib><creatorcontrib>Kamoto, Toshiyuki</creatorcontrib><creatorcontrib>Ogawa, Osamu</creatorcontrib><creatorcontrib>Inoue, Takahiro</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Takashi</au><au>Shimizu, Yosuke</au><au>Terada, Naoki</au><au>Yamasaki, Toshinari</au><au>Nakamura, Eijiro</au><au>Toda, Yoshinobu</au><au>Nishiyama, Hiroyuki</au><au>Kamoto, Toshiyuki</au><au>Ogawa, Osamu</au><au>Inoue, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>70</volume><issue>8</issue><spage>866</spage><epage>874</epage><pages>866-874</pages><issn>0270-4137</issn><eissn>1097-0045</eissn><abstract>BACKGROUND Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. METHODS Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle. RESULTS Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. CONCLUSIONS Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20127734</pmid><doi>10.1002/pros.21120</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-4137
ispartof The Prostate, 2010-06, Vol.70 (8), p.866-874
issn 0270-4137
1097-0045
language eng
recordid cdi_crossref_primary_10_1002_pros_21120
source MEDLINE; Wiley Online Library All Journals
subjects Blotting, Western
Cell Count
Cell Cycle - physiology
Cell Line, Tumor
Cell Proliferation
Flow Cytometry
Humans
Immunohistochemistry
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
kinase inhibitor
Male
molecular-target therapy
Monomeric GTP-Binding Proteins - genetics
Monomeric GTP-Binding Proteins - metabolism
Neuropeptides - genetics
Neuropeptides - metabolism
Prostate - metabolism
prostatic adenocarcinoma
Prostatic Hyperplasia - genetics
Prostatic Hyperplasia - metabolism
Prostatic Neoplasms - genetics
Prostatic Neoplasms - metabolism
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Ras Homolog Enriched in Brain Protein
Receptors, Androgen - genetics
Receptors, Androgen - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
signal transduction
Signal Transduction - physiology
TOR Serine-Threonine Kinases
title Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20androgen%20receptor%20transactivity%20and%20mTOR-S6%20kinase%20pathway%20by%20Rheb%20in%20prostate%20cancer%20cell%20proliferation&rft.jtitle=The%20Prostate&rft.au=Kobayashi,%20Takashi&rft.date=2010-06-01&rft.volume=70&rft.issue=8&rft.spage=866&rft.epage=874&rft.pages=866-874&rft.issn=0270-4137&rft.eissn=1097-0045&rft_id=info:doi/10.1002/pros.21120&rft_dat=%3Cwiley_cross%3EPROS21120%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20127734&rfr_iscdi=true