Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation
BACKGROUND Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act a...
Gespeichert in:
Veröffentlicht in: | The Prostate 2010-06, Vol.70 (8), p.866-874 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 874 |
---|---|
container_issue | 8 |
container_start_page | 866 |
container_title | The Prostate |
container_volume | 70 |
creator | Kobayashi, Takashi Shimizu, Yosuke Terada, Naoki Yamasaki, Toshinari Nakamura, Eijiro Toda, Yoshinobu Nishiyama, Hiroyuki Kamoto, Toshiyuki Ogawa, Osamu Inoue, Takahiro |
description | BACKGROUND
Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer.
METHODS
Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle.
RESULTS
Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR.
CONCLUSIONS
Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/pros.21120 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pros_21120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PROS21120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxa2qVVn-XPgAyOdKoWM7sbNHhFoK3bLVLlCpF2vinYBLNokcw5Jv34QFjlw8luc3b54fY4cCjgWA_NqGpjuWQkj4wCYCpiYBSLOPbALSQJIKZXbYbtf9AxhwkJ_ZjgQhjVHphD0u6Pahwuibmjclx3oVmluqeSBHbWwCjwHrDl30jz72Y5-vr-aLZKn5va-xI95ivNtgz4ueL-6o4L7mo6GIkbjD2lHgjqpqfKx8SeF51z77VGLV0cFL3WPX379dnf5IZvOz89OTWeJSJSFxpTMop5gXU-0UjScZKklJ7TBdZZBhhoWGfPgLap3m-SrPgNJiuEihQO2xL1tdN1jqApW2DX6NobcC7BieHb3a5_AG-GgLtw_FmlZv6GtaAyC2wMZX1L8jZX8v5stX0WQ747tIT28zGO6tNspk9s_lmdU36a-f-u_SXqj_59eLSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Kobayashi, Takashi ; Shimizu, Yosuke ; Terada, Naoki ; Yamasaki, Toshinari ; Nakamura, Eijiro ; Toda, Yoshinobu ; Nishiyama, Hiroyuki ; Kamoto, Toshiyuki ; Ogawa, Osamu ; Inoue, Takahiro</creator><creatorcontrib>Kobayashi, Takashi ; Shimizu, Yosuke ; Terada, Naoki ; Yamasaki, Toshinari ; Nakamura, Eijiro ; Toda, Yoshinobu ; Nishiyama, Hiroyuki ; Kamoto, Toshiyuki ; Ogawa, Osamu ; Inoue, Takahiro</creatorcontrib><description>BACKGROUND
Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer.
METHODS
Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle.
RESULTS
Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR.
CONCLUSIONS
Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 0270-4137</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.21120</identifier><identifier>PMID: 20127734</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Blotting, Western ; Cell Count ; Cell Cycle - physiology ; Cell Line, Tumor ; Cell Proliferation ; Flow Cytometry ; Humans ; Immunohistochemistry ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; kinase inhibitor ; Male ; molecular-target therapy ; Monomeric GTP-Binding Proteins - genetics ; Monomeric GTP-Binding Proteins - metabolism ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Prostate - metabolism ; prostatic adenocarcinoma ; Prostatic Hyperplasia - genetics ; Prostatic Hyperplasia - metabolism ; Prostatic Neoplasms - genetics ; Prostatic Neoplasms - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Ras Homolog Enriched in Brain Protein ; Receptors, Androgen - genetics ; Receptors, Androgen - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; signal transduction ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases</subject><ispartof>The Prostate, 2010-06, Vol.70 (8), p.866-874</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</citedby><cites>FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpros.21120$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpros.21120$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20127734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Takashi</creatorcontrib><creatorcontrib>Shimizu, Yosuke</creatorcontrib><creatorcontrib>Terada, Naoki</creatorcontrib><creatorcontrib>Yamasaki, Toshinari</creatorcontrib><creatorcontrib>Nakamura, Eijiro</creatorcontrib><creatorcontrib>Toda, Yoshinobu</creatorcontrib><creatorcontrib>Nishiyama, Hiroyuki</creatorcontrib><creatorcontrib>Kamoto, Toshiyuki</creatorcontrib><creatorcontrib>Ogawa, Osamu</creatorcontrib><creatorcontrib>Inoue, Takahiro</creatorcontrib><title>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>BACKGROUND
Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer.
METHODS
Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle.
RESULTS
Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR.
CONCLUSIONS
Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.</description><subject>Blotting, Western</subject><subject>Cell Count</subject><subject>Cell Cycle - physiology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Flow Cytometry</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>kinase inhibitor</subject><subject>Male</subject><subject>molecular-target therapy</subject><subject>Monomeric GTP-Binding Proteins - genetics</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Prostate - metabolism</subject><subject>prostatic adenocarcinoma</subject><subject>Prostatic Hyperplasia - genetics</subject><subject>Prostatic Hyperplasia - metabolism</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Ras Homolog Enriched in Brain Protein</subject><subject>Receptors, Androgen - genetics</subject><subject>Receptors, Androgen - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases</subject><issn>0270-4137</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9P3DAQxa2qVVn-XPgAyOdKoWM7sbNHhFoK3bLVLlCpF2vinYBLNokcw5Jv34QFjlw8luc3b54fY4cCjgWA_NqGpjuWQkj4wCYCpiYBSLOPbALSQJIKZXbYbtf9AxhwkJ_ZjgQhjVHphD0u6Pahwuibmjclx3oVmluqeSBHbWwCjwHrDl30jz72Y5-vr-aLZKn5va-xI95ivNtgz4ueL-6o4L7mo6GIkbjD2lHgjqpqfKx8SeF51z77VGLV0cFL3WPX379dnf5IZvOz89OTWeJSJSFxpTMop5gXU-0UjScZKklJ7TBdZZBhhoWGfPgLap3m-SrPgNJiuEihQO2xL1tdN1jqApW2DX6NobcC7BieHb3a5_AG-GgLtw_FmlZv6GtaAyC2wMZX1L8jZX8v5stX0WQ747tIT28zGO6tNspk9s_lmdU36a-f-u_SXqj_59eLSA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Kobayashi, Takashi</creator><creator>Shimizu, Yosuke</creator><creator>Terada, Naoki</creator><creator>Yamasaki, Toshinari</creator><creator>Nakamura, Eijiro</creator><creator>Toda, Yoshinobu</creator><creator>Nishiyama, Hiroyuki</creator><creator>Kamoto, Toshiyuki</creator><creator>Ogawa, Osamu</creator><creator>Inoue, Takahiro</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100601</creationdate><title>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</title><author>Kobayashi, Takashi ; Shimizu, Yosuke ; Terada, Naoki ; Yamasaki, Toshinari ; Nakamura, Eijiro ; Toda, Yoshinobu ; Nishiyama, Hiroyuki ; Kamoto, Toshiyuki ; Ogawa, Osamu ; Inoue, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4320-cfc7a29a8b96c3eb96ce7efe326ca4d505a5ab608734a66488d850e4b88d21303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Blotting, Western</topic><topic>Cell Count</topic><topic>Cell Cycle - physiology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Flow Cytometry</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>kinase inhibitor</topic><topic>Male</topic><topic>molecular-target therapy</topic><topic>Monomeric GTP-Binding Proteins - genetics</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Prostate - metabolism</topic><topic>prostatic adenocarcinoma</topic><topic>Prostatic Hyperplasia - genetics</topic><topic>Prostatic Hyperplasia - metabolism</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Ras Homolog Enriched in Brain Protein</topic><topic>Receptors, Androgen - genetics</topic><topic>Receptors, Androgen - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Takashi</creatorcontrib><creatorcontrib>Shimizu, Yosuke</creatorcontrib><creatorcontrib>Terada, Naoki</creatorcontrib><creatorcontrib>Yamasaki, Toshinari</creatorcontrib><creatorcontrib>Nakamura, Eijiro</creatorcontrib><creatorcontrib>Toda, Yoshinobu</creatorcontrib><creatorcontrib>Nishiyama, Hiroyuki</creatorcontrib><creatorcontrib>Kamoto, Toshiyuki</creatorcontrib><creatorcontrib>Ogawa, Osamu</creatorcontrib><creatorcontrib>Inoue, Takahiro</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Takashi</au><au>Shimizu, Yosuke</au><au>Terada, Naoki</au><au>Yamasaki, Toshinari</au><au>Nakamura, Eijiro</au><au>Toda, Yoshinobu</au><au>Nishiyama, Hiroyuki</au><au>Kamoto, Toshiyuki</au><au>Ogawa, Osamu</au><au>Inoue, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>70</volume><issue>8</issue><spage>866</spage><epage>874</epage><pages>866-874</pages><issn>0270-4137</issn><eissn>1097-0045</eissn><abstract>BACKGROUND
Ras homolog‐enriched in brain (Rheb), a small GTP‐binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer.
METHODS
Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi‐quantitative and quantitative RT‐PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST‐1 assay were used to measure cell proliferation. Fluorescence‐activated cell sorting was used to assess the cell cycle.
RESULTS
Rheb mRNA and protein expression was higher in more aggressive, androgen‐independent prostate cancer cell lines PC3, DU145, and C4‐2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR.
CONCLUSIONS
Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer. Prostate 70: 866–874, 2010. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20127734</pmid><doi>10.1002/pros.21120</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-4137 |
ispartof | The Prostate, 2010-06, Vol.70 (8), p.866-874 |
issn | 0270-4137 1097-0045 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pros_21120 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Blotting, Western Cell Count Cell Cycle - physiology Cell Line, Tumor Cell Proliferation Flow Cytometry Humans Immunohistochemistry Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism kinase inhibitor Male molecular-target therapy Monomeric GTP-Binding Proteins - genetics Monomeric GTP-Binding Proteins - metabolism Neuropeptides - genetics Neuropeptides - metabolism Prostate - metabolism prostatic adenocarcinoma Prostatic Hyperplasia - genetics Prostatic Hyperplasia - metabolism Prostatic Neoplasms - genetics Prostatic Neoplasms - metabolism Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Ras Homolog Enriched in Brain Protein Receptors, Androgen - genetics Receptors, Androgen - metabolism Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Messenger - metabolism signal transduction Signal Transduction - physiology TOR Serine-Threonine Kinases |
title | Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20androgen%20receptor%20transactivity%20and%20mTOR-S6%20kinase%20pathway%20by%20Rheb%20in%20prostate%20cancer%20cell%20proliferation&rft.jtitle=The%20Prostate&rft.au=Kobayashi,%20Takashi&rft.date=2010-06-01&rft.volume=70&rft.issue=8&rft.spage=866&rft.epage=874&rft.pages=866-874&rft.issn=0270-4137&rft.eissn=1097-0045&rft_id=info:doi/10.1002/pros.21120&rft_dat=%3Cwiley_cross%3EPROS21120%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20127734&rfr_iscdi=true |