Multi‐Task Multi‐Fidelity Learning of Properties for Energetic Materials
Data science and artificial intelligence are playing an increasingly important role in the physical sciences. Unfortunately, in the field of energetic materials data scarcity limits the accuracy and even applicability of ML tools. To address data limitations, we compiled multi‐modal data: both exper...
Gespeichert in:
Veröffentlicht in: | Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Propellants, explosives, pyrotechnics |
container_volume | |
creator | Appleton, Robert J. Klinger, Daniel Lee, Brian H. Taylor, Michael Kim, Sohee Blankenship, Samuel Barnes, Brian C. Son, Steven F. Strachan, Alejandro |
description | Data science and artificial intelligence are playing an increasingly important role in the physical sciences. Unfortunately, in the field of energetic materials data scarcity limits the accuracy and even applicability of ML tools. To address data limitations, we compiled multi‐modal data: both experimental and computational results for several properties. We find that multi‐task neural networks can learn from multi‐modal data and outperform single‐task models trained for specific properties. As expected, the improvement is more significant for data‐scarce properties. These models are trained using descriptors built from simple molecular information and can be readily applied for large‐scale materials screening to explore multiple properties simultaneously. This approach is widely applicable to fields outside energetic materials. |
doi_str_mv | 10.1002/prep.202400248 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_prep_202400248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_prep_202400248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-1668f2decf98c11c5c87abc86312ea79f16b70256c993e9c774c21899fdf70fc3</originalsourceid><addsrcrecordid>eNo9kLtOwzAYhS0EEqGwMvsFEvw7iS8jqlpASgVDmSPX-V0ZQhLZZujGI_CMPAmpuEzfOcM5w0fINbACGOM3U8Cp4IxXc6nUCcmg5pBXTMlTkjE55xKgPicXMb4wNk8YZKTZvPfJf318bk18pX9l7TvsfTrQBk0Y_LCno6NPYZwwJI-RujHQ1YBhj8lbujEJgzd9vCRnbgZe_XJBnter7fI-bx7vHpa3TW5BVCkHIZTjHVqnlQWwtVXS7KwSJXA0UjsQO8l4LazWJWorZWU5KK1d5yRztlyQ4ufXhjHGgK6dgn8z4dACa48u2qOL9t9F-Q2E0FUH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi‐Task Multi‐Fidelity Learning of Properties for Energetic Materials</title><source>Access via Wiley Online Library</source><creator>Appleton, Robert J. ; Klinger, Daniel ; Lee, Brian H. ; Taylor, Michael ; Kim, Sohee ; Blankenship, Samuel ; Barnes, Brian C. ; Son, Steven F. ; Strachan, Alejandro</creator><creatorcontrib>Appleton, Robert J. ; Klinger, Daniel ; Lee, Brian H. ; Taylor, Michael ; Kim, Sohee ; Blankenship, Samuel ; Barnes, Brian C. ; Son, Steven F. ; Strachan, Alejandro</creatorcontrib><description>Data science and artificial intelligence are playing an increasingly important role in the physical sciences. Unfortunately, in the field of energetic materials data scarcity limits the accuracy and even applicability of ML tools. To address data limitations, we compiled multi‐modal data: both experimental and computational results for several properties. We find that multi‐task neural networks can learn from multi‐modal data and outperform single‐task models trained for specific properties. As expected, the improvement is more significant for data‐scarce properties. These models are trained using descriptors built from simple molecular information and can be readily applied for large‐scale materials screening to explore multiple properties simultaneously. This approach is widely applicable to fields outside energetic materials.</description><identifier>ISSN: 0721-3115</identifier><identifier>EISSN: 1521-4087</identifier><identifier>DOI: 10.1002/prep.202400248</identifier><language>eng</language><ispartof>Propellants, explosives, pyrotechnics, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-1668f2decf98c11c5c87abc86312ea79f16b70256c993e9c774c21899fdf70fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Appleton, Robert J.</creatorcontrib><creatorcontrib>Klinger, Daniel</creatorcontrib><creatorcontrib>Lee, Brian H.</creatorcontrib><creatorcontrib>Taylor, Michael</creatorcontrib><creatorcontrib>Kim, Sohee</creatorcontrib><creatorcontrib>Blankenship, Samuel</creatorcontrib><creatorcontrib>Barnes, Brian C.</creatorcontrib><creatorcontrib>Son, Steven F.</creatorcontrib><creatorcontrib>Strachan, Alejandro</creatorcontrib><title>Multi‐Task Multi‐Fidelity Learning of Properties for Energetic Materials</title><title>Propellants, explosives, pyrotechnics</title><description>Data science and artificial intelligence are playing an increasingly important role in the physical sciences. Unfortunately, in the field of energetic materials data scarcity limits the accuracy and even applicability of ML tools. To address data limitations, we compiled multi‐modal data: both experimental and computational results for several properties. We find that multi‐task neural networks can learn from multi‐modal data and outperform single‐task models trained for specific properties. As expected, the improvement is more significant for data‐scarce properties. These models are trained using descriptors built from simple molecular information and can be readily applied for large‐scale materials screening to explore multiple properties simultaneously. This approach is widely applicable to fields outside energetic materials.</description><issn>0721-3115</issn><issn>1521-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAYhS0EEqGwMvsFEvw7iS8jqlpASgVDmSPX-V0ZQhLZZujGI_CMPAmpuEzfOcM5w0fINbACGOM3U8Cp4IxXc6nUCcmg5pBXTMlTkjE55xKgPicXMb4wNk8YZKTZvPfJf318bk18pX9l7TvsfTrQBk0Y_LCno6NPYZwwJI-RujHQ1YBhj8lbujEJgzd9vCRnbgZe_XJBnter7fI-bx7vHpa3TW5BVCkHIZTjHVqnlQWwtVXS7KwSJXA0UjsQO8l4LazWJWorZWU5KK1d5yRztlyQ4ufXhjHGgK6dgn8z4dACa48u2qOL9t9F-Q2E0FUH</recordid><startdate>20241123</startdate><enddate>20241123</enddate><creator>Appleton, Robert J.</creator><creator>Klinger, Daniel</creator><creator>Lee, Brian H.</creator><creator>Taylor, Michael</creator><creator>Kim, Sohee</creator><creator>Blankenship, Samuel</creator><creator>Barnes, Brian C.</creator><creator>Son, Steven F.</creator><creator>Strachan, Alejandro</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241123</creationdate><title>Multi‐Task Multi‐Fidelity Learning of Properties for Energetic Materials</title><author>Appleton, Robert J. ; Klinger, Daniel ; Lee, Brian H. ; Taylor, Michael ; Kim, Sohee ; Blankenship, Samuel ; Barnes, Brian C. ; Son, Steven F. ; Strachan, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-1668f2decf98c11c5c87abc86312ea79f16b70256c993e9c774c21899fdf70fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appleton, Robert J.</creatorcontrib><creatorcontrib>Klinger, Daniel</creatorcontrib><creatorcontrib>Lee, Brian H.</creatorcontrib><creatorcontrib>Taylor, Michael</creatorcontrib><creatorcontrib>Kim, Sohee</creatorcontrib><creatorcontrib>Blankenship, Samuel</creatorcontrib><creatorcontrib>Barnes, Brian C.</creatorcontrib><creatorcontrib>Son, Steven F.</creatorcontrib><creatorcontrib>Strachan, Alejandro</creatorcontrib><collection>CrossRef</collection><jtitle>Propellants, explosives, pyrotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appleton, Robert J.</au><au>Klinger, Daniel</au><au>Lee, Brian H.</au><au>Taylor, Michael</au><au>Kim, Sohee</au><au>Blankenship, Samuel</au><au>Barnes, Brian C.</au><au>Son, Steven F.</au><au>Strachan, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Task Multi‐Fidelity Learning of Properties for Energetic Materials</atitle><jtitle>Propellants, explosives, pyrotechnics</jtitle><date>2024-11-23</date><risdate>2024</risdate><issn>0721-3115</issn><eissn>1521-4087</eissn><abstract>Data science and artificial intelligence are playing an increasingly important role in the physical sciences. Unfortunately, in the field of energetic materials data scarcity limits the accuracy and even applicability of ML tools. To address data limitations, we compiled multi‐modal data: both experimental and computational results for several properties. We find that multi‐task neural networks can learn from multi‐modal data and outperform single‐task models trained for specific properties. As expected, the improvement is more significant for data‐scarce properties. These models are trained using descriptors built from simple molecular information and can be readily applied for large‐scale materials screening to explore multiple properties simultaneously. This approach is widely applicable to fields outside energetic materials.</abstract><doi>10.1002/prep.202400248</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-3115 |
ispartof | Propellants, explosives, pyrotechnics, 2024-11 |
issn | 0721-3115 1521-4087 |
language | eng |
recordid | cdi_crossref_primary_10_1002_prep_202400248 |
source | Access via Wiley Online Library |
title | Multi‐Task Multi‐Fidelity Learning of Properties for Energetic Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Task%20Multi%E2%80%90Fidelity%20Learning%20of%20Properties%20for%20Energetic%20Materials&rft.jtitle=Propellants,%20explosives,%20pyrotechnics&rft.au=Appleton,%20Robert%20J.&rft.date=2024-11-23&rft.issn=0721-3115&rft.eissn=1521-4087&rft_id=info:doi/10.1002/prep.202400248&rft_dat=%3Ccrossref%3E10_1002_prep_202400248%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |