Permeation, diffusion, and solution of cyclopropane in silicone rubber

Permeability, solubility, and diffusion coefficients have been determined for cyclopropane (c‐C3H6) in silicone rubber at temperatures between −8 and 70°C at relative pressures from 0.04 to 0.30. The permeability coefficients, $&\[\bar P\]$, are of the order of 10−6 cm3 (STP) · cm/(s · cm2 · cmH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 1990-02, Vol.28 (3), p.407-423
Hauptverfasser: Suwandi, M. S., Hirose, T., Stern, S. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue 3
container_start_page 407
container_title Journal of polymer science. Part B, Polymer physics
container_volume 28
creator Suwandi, M. S.
Hirose, T.
Stern, S. A.
description Permeability, solubility, and diffusion coefficients have been determined for cyclopropane (c‐C3H6) in silicone rubber at temperatures between −8 and 70°C at relative pressures from 0.04 to 0.30. The permeability coefficients, $&\[\bar P\]$, are of the order of 10−6 cm3 (STP) · cm/(s · cm2 · cmHg). $&\[\bar P\]$ increases slightly with increasing penetrant pressure and decreases with increasing temperature, the energy of activation for permeation being −1.27 kcal/gmol at zero pressure. The solubility of cyclopropane in silicone rubber can be represented over the experimental concentration range by the Flory‐Huggins equation. The solubility decreases with increasing temperature and the partial molar heat of solution is −4.95 kcal/gmol. The solubility coefficient in the Henry's law limit, S(0), for cyclopropane and many other gases and vapors can be correlated with (Tc/T)2, where T and Tc are the experimental and critical temperatures, respectively. The mutual diffusion coefficients, D, increase with increasing concentration and temperature, the energy of activation for diffusion being 3.68 kcal/gmol. The pressure dependence of &\[\bar P\] is described satisfactorily by a free‐volume model proposed by Fujita and extended by Stern, Frisch, and coworkers. The permeability, diffusion, and solubility behavior of cyclopropane in silicone rubber is similar to that of propane (C3H8).
doi_str_mv 10.1002/polb.1990.090280311
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_polb_1990_090280311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>POLB090280311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4061-daf97d2aba7a253483ab8014a3c3721fb0b895f61a0ad8da03df0140bc2607f3</originalsourceid><addsrcrecordid>eNqNkNFKwzAYhYMoOKdP4E0fwM4_SZsmN4IbbgrDDRx6GZI2gWjXlGRF9_a2ToaXXp0Dh_NdfAhdY5hgAHLb-lpPsBAwAQGEA8X4BI0wCJFCxvkpGgHnRcoIY-foIsZ3gH7LxQjN1yZsjdo539wklbO2iz9VNVUSfd0NQ-JtUu7L2rfBt6oxiWuS6GpX-r6HTmsTLtGZVXU0V785Rpv5w2b2mC5Xi6fZ_TItM2A4rZQVRUWUVoUiOc04VZoDzhQtaUGw1aC5yC3DClTFKwW0sv0MuiQMCkvHiB6wZfAxBmNlG9xWhb3EIAcTcjAhBxPyaKJ_3R1en642-_9c5Hq1nP4FpAeAizvzdQSo8CFZQYtcvj0vJGGCvbyup5LRb4UkdEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Permeation, diffusion, and solution of cyclopropane in silicone rubber</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suwandi, M. S. ; Hirose, T. ; Stern, S. A.</creator><creatorcontrib>Suwandi, M. S. ; Hirose, T. ; Stern, S. A.</creatorcontrib><description>Permeability, solubility, and diffusion coefficients have been determined for cyclopropane (c‐C3H6) in silicone rubber at temperatures between −8 and 70°C at relative pressures from 0.04 to 0.30. The permeability coefficients, $&amp;\[\bar P\]$, are of the order of 10−6 cm3 (STP) · cm/(s · cm2 · cmHg). $&amp;\[\bar P\]$ increases slightly with increasing penetrant pressure and decreases with increasing temperature, the energy of activation for permeation being −1.27 kcal/gmol at zero pressure. The solubility of cyclopropane in silicone rubber can be represented over the experimental concentration range by the Flory‐Huggins equation. The solubility decreases with increasing temperature and the partial molar heat of solution is −4.95 kcal/gmol. The solubility coefficient in the Henry's law limit, S(0), for cyclopropane and many other gases and vapors can be correlated with (Tc/T)2, where T and Tc are the experimental and critical temperatures, respectively. The mutual diffusion coefficients, D, increase with increasing concentration and temperature, the energy of activation for diffusion being 3.68 kcal/gmol. The pressure dependence of &amp;\[\bar P\] is described satisfactorily by a free‐volume model proposed by Fujita and extended by Stern, Frisch, and coworkers. The permeability, diffusion, and solubility behavior of cyclopropane in silicone rubber is similar to that of propane (C3H8).</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.1990.090280311</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>Journal of polymer science. Part B, Polymer physics, 1990-02, Vol.28 (3), p.407-423</ispartof><rights>Copyright © 1990 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4061-daf97d2aba7a253483ab8014a3c3721fb0b895f61a0ad8da03df0140bc2607f3</citedby><cites>FETCH-LOGICAL-c4061-daf97d2aba7a253483ab8014a3c3721fb0b895f61a0ad8da03df0140bc2607f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.1990.090280311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.1990.090280311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Suwandi, M. S.</creatorcontrib><creatorcontrib>Hirose, T.</creatorcontrib><creatorcontrib>Stern, S. A.</creatorcontrib><title>Permeation, diffusion, and solution of cyclopropane in silicone rubber</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Permeability, solubility, and diffusion coefficients have been determined for cyclopropane (c‐C3H6) in silicone rubber at temperatures between −8 and 70°C at relative pressures from 0.04 to 0.30. The permeability coefficients, $&amp;\[\bar P\]$, are of the order of 10−6 cm3 (STP) · cm/(s · cm2 · cmHg). $&amp;\[\bar P\]$ increases slightly with increasing penetrant pressure and decreases with increasing temperature, the energy of activation for permeation being −1.27 kcal/gmol at zero pressure. The solubility of cyclopropane in silicone rubber can be represented over the experimental concentration range by the Flory‐Huggins equation. The solubility decreases with increasing temperature and the partial molar heat of solution is −4.95 kcal/gmol. The solubility coefficient in the Henry's law limit, S(0), for cyclopropane and many other gases and vapors can be correlated with (Tc/T)2, where T and Tc are the experimental and critical temperatures, respectively. The mutual diffusion coefficients, D, increase with increasing concentration and temperature, the energy of activation for diffusion being 3.68 kcal/gmol. The pressure dependence of &amp;\[\bar P\] is described satisfactorily by a free‐volume model proposed by Fujita and extended by Stern, Frisch, and coworkers. The permeability, diffusion, and solubility behavior of cyclopropane in silicone rubber is similar to that of propane (C3H8).</description><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqNkNFKwzAYhYMoOKdP4E0fwM4_SZsmN4IbbgrDDRx6GZI2gWjXlGRF9_a2ToaXXp0Dh_NdfAhdY5hgAHLb-lpPsBAwAQGEA8X4BI0wCJFCxvkpGgHnRcoIY-foIsZ3gH7LxQjN1yZsjdo539wklbO2iz9VNVUSfd0NQ-JtUu7L2rfBt6oxiWuS6GpX-r6HTmsTLtGZVXU0V785Rpv5w2b2mC5Xi6fZ_TItM2A4rZQVRUWUVoUiOc04VZoDzhQtaUGw1aC5yC3DClTFKwW0sv0MuiQMCkvHiB6wZfAxBmNlG9xWhb3EIAcTcjAhBxPyaKJ_3R1en642-_9c5Hq1nP4FpAeAizvzdQSo8CFZQYtcvj0vJGGCvbyup5LRb4UkdEY</recordid><startdate>199002</startdate><enddate>199002</enddate><creator>Suwandi, M. S.</creator><creator>Hirose, T.</creator><creator>Stern, S. A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199002</creationdate><title>Permeation, diffusion, and solution of cyclopropane in silicone rubber</title><author>Suwandi, M. S. ; Hirose, T. ; Stern, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4061-daf97d2aba7a253483ab8014a3c3721fb0b895f61a0ad8da03df0140bc2607f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suwandi, M. S.</creatorcontrib><creatorcontrib>Hirose, T.</creatorcontrib><creatorcontrib>Stern, S. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suwandi, M. S.</au><au>Hirose, T.</au><au>Stern, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeation, diffusion, and solution of cyclopropane in silicone rubber</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>1990-02</date><risdate>1990</risdate><volume>28</volume><issue>3</issue><spage>407</spage><epage>423</epage><pages>407-423</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><abstract>Permeability, solubility, and diffusion coefficients have been determined for cyclopropane (c‐C3H6) in silicone rubber at temperatures between −8 and 70°C at relative pressures from 0.04 to 0.30. The permeability coefficients, $&amp;\[\bar P\]$, are of the order of 10−6 cm3 (STP) · cm/(s · cm2 · cmHg). $&amp;\[\bar P\]$ increases slightly with increasing penetrant pressure and decreases with increasing temperature, the energy of activation for permeation being −1.27 kcal/gmol at zero pressure. The solubility of cyclopropane in silicone rubber can be represented over the experimental concentration range by the Flory‐Huggins equation. The solubility decreases with increasing temperature and the partial molar heat of solution is −4.95 kcal/gmol. The solubility coefficient in the Henry's law limit, S(0), for cyclopropane and many other gases and vapors can be correlated with (Tc/T)2, where T and Tc are the experimental and critical temperatures, respectively. The mutual diffusion coefficients, D, increase with increasing concentration and temperature, the energy of activation for diffusion being 3.68 kcal/gmol. The pressure dependence of &amp;\[\bar P\] is described satisfactorily by a free‐volume model proposed by Fujita and extended by Stern, Frisch, and coworkers. The permeability, diffusion, and solubility behavior of cyclopropane in silicone rubber is similar to that of propane (C3H8).</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/polb.1990.090280311</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 1990-02, Vol.28 (3), p.407-423
issn 0887-6266
1099-0488
language eng
recordid cdi_crossref_primary_10_1002_polb_1990_090280311
source Wiley Online Library Journals Frontfile Complete
title Permeation, diffusion, and solution of cyclopropane in silicone rubber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeation,%20diffusion,%20and%20solution%20of%20cyclopropane%20in%20silicone%20rubber&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Suwandi,%20M.%20S.&rft.date=1990-02&rft.volume=28&rft.issue=3&rft.spage=407&rft.epage=423&rft.pages=407-423&rft.issn=0887-6266&rft.eissn=1099-0488&rft_id=info:doi/10.1002/polb.1990.090280311&rft_dat=%3Cwiley_cross%3EPOLB090280311%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true