Microphase structure of interpenetrating polymeric networks based on polyurethane and polyurethane ionomer

Interpenetrating polymer networks based on polyurethane and polyurethane ionomer were studied using wide‐angle and small‐angle X‐ray diffraction. The polyurethane network is a multiblock polymer based on the trimethylolpropane adduct with 2,4‐toluene‐diisocyanate and poly(propylene oxide tetrahydrof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 1987-01, Vol.25 (1), p.43-55
Hauptverfasser: Lipatov, Yu. S., Shilov, V. V., Bogdanovich, V. A., Karabanova, L. V., Sergeeva, L. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 43
container_title Journal of polymer science. Part B, Polymer physics
container_volume 25
creator Lipatov, Yu. S.
Shilov, V. V.
Bogdanovich, V. A.
Karabanova, L. V.
Sergeeva, L. M.
description Interpenetrating polymer networks based on polyurethane and polyurethane ionomer were studied using wide‐angle and small‐angle X‐ray diffraction. The polyurethane network is a multiblock polymer based on the trimethylolpropane adduct with 2,4‐toluene‐diisocyanate and poly(propylene oxide tetrahydrofuran) copolymer. Polyurethane ionomer represents a network formed from poly(propylene glycol) containing three OH side groups, 2,4‐toluene‐diisocyanate, 2,2′‐dimethylethanol‐amine, and 1,5‐dibromopentene. The network polymers are characterized by structure heterogeneity developed during microphase separation as a result of hard and soft block segregation. The interpenetrating networks investigated are amorphous systems over the whole range of compositions. They form a very complicated structure where the phase separation of polyurethane and ionomer takes place. It is important to note that phase separation leads to the appearance of microphase structure periodicity due to regular arrangements of microregions enriched by one of the components. The latter fact is considered to be a sign of spinodal phase separation at the initial stages.
doi_str_mv 10.1002/polb.1987.090250104
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_polb_1987_090250104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>POLB090250104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3694-8ddfeb03449112dc24053e3c1cdf3de580cf17c3c6814a60ba02154924b39dfa3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwBFxy4Jqyjp3YviBBBQWp0B6KkLhYjuNQ9yeJ7FSlb49LUAU3Tivt7DejHYQuMQwwQHLd1Kt8gAVnAxCQpICBHqEeBiFioJwfox5wzuIsybJTdOb9AiBoqeihxbPVrm7mypvIt26j240zUV1GtmqNa0xlWqdaW31EIWO3Ns7qKOy2tVv6KA9UEdXVtxa4dq4qE6mq-LuwdVUH8hydlGrlzcXP7KPXh_vZ8DEeT0ZPw9txrEkmaMyLojQ5EEoFxkmhEwopMURjXZSkMCkHXWKmic44piqDXEGCUyoSmhNRlIr0Eel8w2PeO1PKxtm1cjuJQe7rkvu65L4ueagrUFcd1Siv1ap0qtLWH1COWYZZEs5uurOtXZndf5zldDK--50TdwbWt-bzYKDcUmaMsFS-vYzkjL2DGNKpZOQLb1SQLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microphase structure of interpenetrating polymeric networks based on polyurethane and polyurethane ionomer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lipatov, Yu. S. ; Shilov, V. V. ; Bogdanovich, V. A. ; Karabanova, L. V. ; Sergeeva, L. M.</creator><creatorcontrib>Lipatov, Yu. S. ; Shilov, V. V. ; Bogdanovich, V. A. ; Karabanova, L. V. ; Sergeeva, L. M.</creatorcontrib><description>Interpenetrating polymer networks based on polyurethane and polyurethane ionomer were studied using wide‐angle and small‐angle X‐ray diffraction. The polyurethane network is a multiblock polymer based on the trimethylolpropane adduct with 2,4‐toluene‐diisocyanate and poly(propylene oxide tetrahydrofuran) copolymer. Polyurethane ionomer represents a network formed from poly(propylene glycol) containing three OH side groups, 2,4‐toluene‐diisocyanate, 2,2′‐dimethylethanol‐amine, and 1,5‐dibromopentene. The network polymers are characterized by structure heterogeneity developed during microphase separation as a result of hard and soft block segregation. The interpenetrating networks investigated are amorphous systems over the whole range of compositions. They form a very complicated structure where the phase separation of polyurethane and ionomer takes place. It is important to note that phase separation leads to the appearance of microphase structure periodicity due to regular arrangements of microregions enriched by one of the components. The latter fact is considered to be a sign of spinodal phase separation at the initial stages.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.1987.090250104</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Structure, morphology and analysis</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 1987-01, Vol.25 (1), p.43-55</ispartof><rights>Copyright © 1987 John Wiley &amp; Sons, Inc.</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3694-8ddfeb03449112dc24053e3c1cdf3de580cf17c3c6814a60ba02154924b39dfa3</citedby><cites>FETCH-LOGICAL-c3694-8ddfeb03449112dc24053e3c1cdf3de580cf17c3c6814a60ba02154924b39dfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.1987.090250104$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.1987.090250104$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8176172$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lipatov, Yu. S.</creatorcontrib><creatorcontrib>Shilov, V. V.</creatorcontrib><creatorcontrib>Bogdanovich, V. A.</creatorcontrib><creatorcontrib>Karabanova, L. V.</creatorcontrib><creatorcontrib>Sergeeva, L. M.</creatorcontrib><title>Microphase structure of interpenetrating polymeric networks based on polyurethane and polyurethane ionomer</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Interpenetrating polymer networks based on polyurethane and polyurethane ionomer were studied using wide‐angle and small‐angle X‐ray diffraction. The polyurethane network is a multiblock polymer based on the trimethylolpropane adduct with 2,4‐toluene‐diisocyanate and poly(propylene oxide tetrahydrofuran) copolymer. Polyurethane ionomer represents a network formed from poly(propylene glycol) containing three OH side groups, 2,4‐toluene‐diisocyanate, 2,2′‐dimethylethanol‐amine, and 1,5‐dibromopentene. The network polymers are characterized by structure heterogeneity developed during microphase separation as a result of hard and soft block segregation. The interpenetrating networks investigated are amorphous systems over the whole range of compositions. They form a very complicated structure where the phase separation of polyurethane and ionomer takes place. It is important to note that phase separation leads to the appearance of microphase structure periodicity due to regular arrangements of microregions enriched by one of the components. The latter fact is considered to be a sign of spinodal phase separation at the initial stages.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Structure, morphology and analysis</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwBFxy4Jqyjp3YviBBBQWp0B6KkLhYjuNQ9yeJ7FSlb49LUAU3Tivt7DejHYQuMQwwQHLd1Kt8gAVnAxCQpICBHqEeBiFioJwfox5wzuIsybJTdOb9AiBoqeihxbPVrm7mypvIt26j240zUV1GtmqNa0xlWqdaW31EIWO3Ns7qKOy2tVv6KA9UEdXVtxa4dq4qE6mq-LuwdVUH8hydlGrlzcXP7KPXh_vZ8DEeT0ZPw9txrEkmaMyLojQ5EEoFxkmhEwopMURjXZSkMCkHXWKmic44piqDXEGCUyoSmhNRlIr0Eel8w2PeO1PKxtm1cjuJQe7rkvu65L4ueagrUFcd1Siv1ap0qtLWH1COWYZZEs5uurOtXZndf5zldDK--50TdwbWt-bzYKDcUmaMsFS-vYzkjL2DGNKpZOQLb1SQLQ</recordid><startdate>198701</startdate><enddate>198701</enddate><creator>Lipatov, Yu. S.</creator><creator>Shilov, V. V.</creator><creator>Bogdanovich, V. A.</creator><creator>Karabanova, L. V.</creator><creator>Sergeeva, L. M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198701</creationdate><title>Microphase structure of interpenetrating polymeric networks based on polyurethane and polyurethane ionomer</title><author>Lipatov, Yu. S. ; Shilov, V. V. ; Bogdanovich, V. A. ; Karabanova, L. V. ; Sergeeva, L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3694-8ddfeb03449112dc24053e3c1cdf3de580cf17c3c6814a60ba02154924b39dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Structure, morphology and analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipatov, Yu. S.</creatorcontrib><creatorcontrib>Shilov, V. V.</creatorcontrib><creatorcontrib>Bogdanovich, V. A.</creatorcontrib><creatorcontrib>Karabanova, L. V.</creatorcontrib><creatorcontrib>Sergeeva, L. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipatov, Yu. S.</au><au>Shilov, V. V.</au><au>Bogdanovich, V. A.</au><au>Karabanova, L. V.</au><au>Sergeeva, L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microphase structure of interpenetrating polymeric networks based on polyurethane and polyurethane ionomer</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>1987-01</date><risdate>1987</risdate><volume>25</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>Interpenetrating polymer networks based on polyurethane and polyurethane ionomer were studied using wide‐angle and small‐angle X‐ray diffraction. The polyurethane network is a multiblock polymer based on the trimethylolpropane adduct with 2,4‐toluene‐diisocyanate and poly(propylene oxide tetrahydrofuran) copolymer. Polyurethane ionomer represents a network formed from poly(propylene glycol) containing three OH side groups, 2,4‐toluene‐diisocyanate, 2,2′‐dimethylethanol‐amine, and 1,5‐dibromopentene. The network polymers are characterized by structure heterogeneity developed during microphase separation as a result of hard and soft block segregation. The interpenetrating networks investigated are amorphous systems over the whole range of compositions. They form a very complicated structure where the phase separation of polyurethane and ionomer takes place. It is important to note that phase separation leads to the appearance of microphase structure periodicity due to regular arrangements of microregions enriched by one of the components. The latter fact is considered to be a sign of spinodal phase separation at the initial stages.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/polb.1987.090250104</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 1987-01, Vol.25 (1), p.43-55
issn 0887-6266
1099-0488
language eng
recordid cdi_crossref_primary_10_1002_polb_1987_090250104
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Structure, morphology and analysis
title Microphase structure of interpenetrating polymeric networks based on polyurethane and polyurethane ionomer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microphase%20structure%20of%20interpenetrating%20polymeric%20networks%20based%20on%20polyurethane%20and%20polyurethane%20ionomer&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Lipatov,%20Yu.%20S.&rft.date=1987-01&rft.volume=25&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.1987.090250104&rft_dat=%3Cwiley_cross%3EPOLB090250104%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true