Unusual contributions of molecular architecture to rheology and flow birefringence in hyperbranched polystyrene melts

With the increase in sophisticated synthesis methods, it appears that polymer architecture may be a tunable property. Therefore, the role of architecture in rheological and processing properties has received renewed attention, mainly because of dendrimer synthesis and metallocene‐catalyst technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2001-11, Vol.39 (21), p.2562-2571
Hauptverfasser: Kharchenko, Semen B., Kannan, Rangaramanujam M., Cernohous, Jeff J., Venkataramani, Shivshankar, Babu, Gaddam N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2571
container_issue 21
container_start_page 2562
container_title Journal of polymer science. Part B, Polymer physics
container_volume 39
creator Kharchenko, Semen B.
Kannan, Rangaramanujam M.
Cernohous, Jeff J.
Venkataramani, Shivshankar
Babu, Gaddam N.
description With the increase in sophisticated synthesis methods, it appears that polymer architecture may be a tunable property. Therefore, the role of architecture in rheological and processing properties has received renewed attention, mainly because of dendrimer synthesis and metallocene‐catalyst technology. Linear polymers and hyperbranched polymers represent two ends of branching complexity. Some previous studies have suggested that hyperbranched polymers may behave like unentangled polymers, whereas others have proposed that they exhibit the properties of soft colloids. In an effort to compare the responses of linear and hyperbranched polymers, we synthesized starlike hyperbranched polystyrenes (HBPSs) of various branch lengths and numbers of branches. The HBPSs used in this study were unentangled or weakly entangled, allowing us to study the effect of branch density more readily. Two linear polystyrene (L‐PS) melts and two HBPSs were studied. Using a custom‐built rheooptical apparatus, we characterized the rheology and flow birefringence of these materials. To our knowledge, these are the first flow birefringence measurements on highly branched polymer melts. Our results suggest that the flow behavior of HBPS is significantly different from that of L‐PS: (1) HBPS shows nonterminal behavior in the low‐frequency rheological response; (2) when the stress‐optical rule (SOR) holds, the stress‐optical coefficient of HBPS is much lower than those of analogous linear polymers; and (3) when the branch density is high and the branch length is sufficiently low, the SOR fails for these homopolymer melts. A significant increase in the birefringence for a given amount of stress in the low‐frequency region suggests that there may be a soft core in these materials due to the strong preferential radial orientation of chain segments near the center of a molecule versus those near the periphery. The predominantly elastic response of the soft structures may be responsible for the enhanced form birefringence. Our preliminary results indicate that these materials may exhibit both polymeric and soft‐colloid natures. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2562–2571, 2001
doi_str_mv 10.1002/polb.10013
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_polb_10013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_PVC67H7T_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3743-692582319aaa4397082f1c553897defabe64a041aaf4827f86c1a50ad9819c6b3</originalsourceid><addsrcrecordid>eNp9kEtvFDEQhC0EEkvgwi_wgRPSEHs848cRViRBWpFIJHC0erztrMFrr-wZhfn3zGZ53Dh1Sf1VqVSEvObsHWesPT_kOBwVF0_IijNjGtZp_ZSsmNaqka2Uz8mLWr8ztvx6syLTXZrqBJG6nMYShmkMOVWaPd3niG6KUCgUtwsjunEqSMdMyw5zzPczhbSlPuYHOoSCvoR0j8khDYnu5gOWoUByO9zSpdVcx7lgQrrHONaX5JmHWPHV73tG7i4-3q6vms315af1-03jhOpEI03b61ZwAwCdMIrp1nPX90IbtUUPA8oOWMcBfKdb5bV0HHoGW6O5cXIQZ-TtKdeVXOvS0R5K2EOZLWf2OJg9DmYfB1vgNyf4ANVB9Mf2of5z8JYryReMn7CHEHH-T6C9ud58-BPdnDyhjvjzrwfKDyuVUL399vnS3nxdS3Wlbu0X8Qul64z4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unusual contributions of molecular architecture to rheology and flow birefringence in hyperbranched polystyrene melts</title><source>Wiley Online Library All Journals</source><creator>Kharchenko, Semen B. ; Kannan, Rangaramanujam M. ; Cernohous, Jeff J. ; Venkataramani, Shivshankar ; Babu, Gaddam N.</creator><creatorcontrib>Kharchenko, Semen B. ; Kannan, Rangaramanujam M. ; Cernohous, Jeff J. ; Venkataramani, Shivshankar ; Babu, Gaddam N.</creatorcontrib><description>With the increase in sophisticated synthesis methods, it appears that polymer architecture may be a tunable property. Therefore, the role of architecture in rheological and processing properties has received renewed attention, mainly because of dendrimer synthesis and metallocene‐catalyst technology. Linear polymers and hyperbranched polymers represent two ends of branching complexity. Some previous studies have suggested that hyperbranched polymers may behave like unentangled polymers, whereas others have proposed that they exhibit the properties of soft colloids. In an effort to compare the responses of linear and hyperbranched polymers, we synthesized starlike hyperbranched polystyrenes (HBPSs) of various branch lengths and numbers of branches. The HBPSs used in this study were unentangled or weakly entangled, allowing us to study the effect of branch density more readily. Two linear polystyrene (L‐PS) melts and two HBPSs were studied. Using a custom‐built rheooptical apparatus, we characterized the rheology and flow birefringence of these materials. To our knowledge, these are the first flow birefringence measurements on highly branched polymer melts. Our results suggest that the flow behavior of HBPS is significantly different from that of L‐PS: (1) HBPS shows nonterminal behavior in the low‐frequency rheological response; (2) when the stress‐optical rule (SOR) holds, the stress‐optical coefficient of HBPS is much lower than those of analogous linear polymers; and (3) when the branch density is high and the branch length is sufficiently low, the SOR fails for these homopolymer melts. A significant increase in the birefringence for a given amount of stress in the low‐frequency region suggests that there may be a soft core in these materials due to the strong preferential radial orientation of chain segments near the center of a molecule versus those near the periphery. The predominantly elastic response of the soft structures may be responsible for the enhanced form birefringence. Our preliminary results indicate that these materials may exhibit both polymeric and soft‐colloid natures. © 2001 John Wiley &amp; Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2562–2571, 2001</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.10013</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Applied sciences ; birefringence ; Exact sciences and technology ; hyperbranched ; Organic polymers ; Physicochemistry of polymers ; polystyrene ; Properties and characterization ; Rheology and viscoelasticity ; rheooptics ; star polymers</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2001-11, Vol.39 (21), p.2562-2571</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Inc.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3743-692582319aaa4397082f1c553897defabe64a041aaf4827f86c1a50ad9819c6b3</citedby><cites>FETCH-LOGICAL-c3743-692582319aaa4397082f1c553897defabe64a041aaf4827f86c1a50ad9819c6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.10013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.10013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1121761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kharchenko, Semen B.</creatorcontrib><creatorcontrib>Kannan, Rangaramanujam M.</creatorcontrib><creatorcontrib>Cernohous, Jeff J.</creatorcontrib><creatorcontrib>Venkataramani, Shivshankar</creatorcontrib><creatorcontrib>Babu, Gaddam N.</creatorcontrib><title>Unusual contributions of molecular architecture to rheology and flow birefringence in hyperbranched polystyrene melts</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>With the increase in sophisticated synthesis methods, it appears that polymer architecture may be a tunable property. Therefore, the role of architecture in rheological and processing properties has received renewed attention, mainly because of dendrimer synthesis and metallocene‐catalyst technology. Linear polymers and hyperbranched polymers represent two ends of branching complexity. Some previous studies have suggested that hyperbranched polymers may behave like unentangled polymers, whereas others have proposed that they exhibit the properties of soft colloids. In an effort to compare the responses of linear and hyperbranched polymers, we synthesized starlike hyperbranched polystyrenes (HBPSs) of various branch lengths and numbers of branches. The HBPSs used in this study were unentangled or weakly entangled, allowing us to study the effect of branch density more readily. Two linear polystyrene (L‐PS) melts and two HBPSs were studied. Using a custom‐built rheooptical apparatus, we characterized the rheology and flow birefringence of these materials. To our knowledge, these are the first flow birefringence measurements on highly branched polymer melts. Our results suggest that the flow behavior of HBPS is significantly different from that of L‐PS: (1) HBPS shows nonterminal behavior in the low‐frequency rheological response; (2) when the stress‐optical rule (SOR) holds, the stress‐optical coefficient of HBPS is much lower than those of analogous linear polymers; and (3) when the branch density is high and the branch length is sufficiently low, the SOR fails for these homopolymer melts. A significant increase in the birefringence for a given amount of stress in the low‐frequency region suggests that there may be a soft core in these materials due to the strong preferential radial orientation of chain segments near the center of a molecule versus those near the periphery. The predominantly elastic response of the soft structures may be responsible for the enhanced form birefringence. Our preliminary results indicate that these materials may exhibit both polymeric and soft‐colloid natures. © 2001 John Wiley &amp; Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2562–2571, 2001</description><subject>Applied sciences</subject><subject>birefringence</subject><subject>Exact sciences and technology</subject><subject>hyperbranched</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>polystyrene</subject><subject>Properties and characterization</subject><subject>Rheology and viscoelasticity</subject><subject>rheooptics</subject><subject>star polymers</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kEtvFDEQhC0EEkvgwi_wgRPSEHs848cRViRBWpFIJHC0erztrMFrr-wZhfn3zGZ53Dh1Sf1VqVSEvObsHWesPT_kOBwVF0_IijNjGtZp_ZSsmNaqka2Uz8mLWr8ztvx6syLTXZrqBJG6nMYShmkMOVWaPd3niG6KUCgUtwsjunEqSMdMyw5zzPczhbSlPuYHOoSCvoR0j8khDYnu5gOWoUByO9zSpdVcx7lgQrrHONaX5JmHWPHV73tG7i4-3q6vms315af1-03jhOpEI03b61ZwAwCdMIrp1nPX90IbtUUPA8oOWMcBfKdb5bV0HHoGW6O5cXIQZ-TtKdeVXOvS0R5K2EOZLWf2OJg9DmYfB1vgNyf4ANVB9Mf2of5z8JYryReMn7CHEHH-T6C9ud58-BPdnDyhjvjzrwfKDyuVUL399vnS3nxdS3Wlbu0X8Qul64z4</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Kharchenko, Semen B.</creator><creator>Kannan, Rangaramanujam M.</creator><creator>Cernohous, Jeff J.</creator><creator>Venkataramani, Shivshankar</creator><creator>Babu, Gaddam N.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011101</creationdate><title>Unusual contributions of molecular architecture to rheology and flow birefringence in hyperbranched polystyrene melts</title><author>Kharchenko, Semen B. ; Kannan, Rangaramanujam M. ; Cernohous, Jeff J. ; Venkataramani, Shivshankar ; Babu, Gaddam N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3743-692582319aaa4397082f1c553897defabe64a041aaf4827f86c1a50ad9819c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>birefringence</topic><topic>Exact sciences and technology</topic><topic>hyperbranched</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>polystyrene</topic><topic>Properties and characterization</topic><topic>Rheology and viscoelasticity</topic><topic>rheooptics</topic><topic>star polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharchenko, Semen B.</creatorcontrib><creatorcontrib>Kannan, Rangaramanujam M.</creatorcontrib><creatorcontrib>Cernohous, Jeff J.</creatorcontrib><creatorcontrib>Venkataramani, Shivshankar</creatorcontrib><creatorcontrib>Babu, Gaddam N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharchenko, Semen B.</au><au>Kannan, Rangaramanujam M.</au><au>Cernohous, Jeff J.</au><au>Venkataramani, Shivshankar</au><au>Babu, Gaddam N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual contributions of molecular architecture to rheology and flow birefringence in hyperbranched polystyrene melts</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>39</volume><issue>21</issue><spage>2562</spage><epage>2571</epage><pages>2562-2571</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>With the increase in sophisticated synthesis methods, it appears that polymer architecture may be a tunable property. Therefore, the role of architecture in rheological and processing properties has received renewed attention, mainly because of dendrimer synthesis and metallocene‐catalyst technology. Linear polymers and hyperbranched polymers represent two ends of branching complexity. Some previous studies have suggested that hyperbranched polymers may behave like unentangled polymers, whereas others have proposed that they exhibit the properties of soft colloids. In an effort to compare the responses of linear and hyperbranched polymers, we synthesized starlike hyperbranched polystyrenes (HBPSs) of various branch lengths and numbers of branches. The HBPSs used in this study were unentangled or weakly entangled, allowing us to study the effect of branch density more readily. Two linear polystyrene (L‐PS) melts and two HBPSs were studied. Using a custom‐built rheooptical apparatus, we characterized the rheology and flow birefringence of these materials. To our knowledge, these are the first flow birefringence measurements on highly branched polymer melts. Our results suggest that the flow behavior of HBPS is significantly different from that of L‐PS: (1) HBPS shows nonterminal behavior in the low‐frequency rheological response; (2) when the stress‐optical rule (SOR) holds, the stress‐optical coefficient of HBPS is much lower than those of analogous linear polymers; and (3) when the branch density is high and the branch length is sufficiently low, the SOR fails for these homopolymer melts. A significant increase in the birefringence for a given amount of stress in the low‐frequency region suggests that there may be a soft core in these materials due to the strong preferential radial orientation of chain segments near the center of a molecule versus those near the periphery. The predominantly elastic response of the soft structures may be responsible for the enhanced form birefringence. Our preliminary results indicate that these materials may exhibit both polymeric and soft‐colloid natures. © 2001 John Wiley &amp; Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2562–2571, 2001</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/polb.10013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2001-11, Vol.39 (21), p.2562-2571
issn 0887-6266
1099-0488
language eng
recordid cdi_crossref_primary_10_1002_polb_10013
source Wiley Online Library All Journals
subjects Applied sciences
birefringence
Exact sciences and technology
hyperbranched
Organic polymers
Physicochemistry of polymers
polystyrene
Properties and characterization
Rheology and viscoelasticity
rheooptics
star polymers
title Unusual contributions of molecular architecture to rheology and flow birefringence in hyperbranched polystyrene melts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20contributions%20of%20molecular%20architecture%20to%20rheology%20and%20flow%20birefringence%20in%20hyperbranched%20polystyrene%20melts&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Kharchenko,%20Semen%20B.&rft.date=2001-11-01&rft.volume=39&rft.issue=21&rft.spage=2562&rft.epage=2571&rft.pages=2562-2571&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.10013&rft_dat=%3Cistex_cross%3Eark_67375_WNG_PVC67H7T_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true