Comparative study of maximum power point tracking algorithms

Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and mainta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2003-01, Vol.11 (1), p.47-62
Hauptverfasser: Hohm, D. P., Ropp, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 47
container_title Progress in photovoltaics
container_volume 11
creator Hohm, D. P.
Ropp, M. E.
description Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/pip.459
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pip_459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_XSDZ6QM8_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4679-c939e3b8279727aea7bc08cb4cb26f1b5177028217a8a5ead18800354a1a75743</originalsourceid><addsrcrecordid>eNp1z0FLwzAYBuAiCs4p_oVexIN0JmnSJOBFps7h1ImKw0v4mqUzrl1L0rnt39tR0ZOX7_0ODy-8QXCMUQ8jRM4rW_UokztBByMpI8zkZHf7JyTiUrL94MD7T4QwFzLpBBf9sqjAQW2_TOjr5XQTlllYwNoWyyKsypVxzbWLOqwd6LldzELIZ6Wz9UfhD4O9DHJvjn6yG7zeXL_0b6PR42DYvxxFmiZcRlrG0sSpIFxywsEATzUSOqU6JUmGU4Y5R0QQzEEAMzDFQiAUMwoYOOM07ganba92pffOZKpytgC3URip7WjVjFbN6EaetLICryHPHCy09X-c0oTSmDTurHUrm5vNf3VqPBy3rVGrra_N-leDm6uEx5ypt4eBmjxfvSdP90Ldxd-sLXQZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative study of maximum power point tracking algorithms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hohm, D. P. ; Ropp, M. E.</creator><creatorcontrib>Hohm, D. P. ; Ropp, M. E.</creatorcontrib><description>Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&amp;O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&amp;O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.459</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; digital control ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; experimental comparison ; maximum power point tracking ; microcontroller ; MPPT efficiency ; Natural energy ; Photovoltaic conversion ; power electronics ; Solar energy</subject><ispartof>Progress in photovoltaics, 2003-01, Vol.11 (1), p.47-62</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4679-c939e3b8279727aea7bc08cb4cb26f1b5177028217a8a5ead18800354a1a75743</citedby><cites>FETCH-LOGICAL-c4679-c939e3b8279727aea7bc08cb4cb26f1b5177028217a8a5ead18800354a1a75743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14464432$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hohm, D. P.</creatorcontrib><creatorcontrib>Ropp, M. E.</creatorcontrib><title>Comparative study of maximum power point tracking algorithms</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&amp;O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&amp;O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>digital control</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>experimental comparison</subject><subject>maximum power point tracking</subject><subject>microcontroller</subject><subject>MPPT efficiency</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>power electronics</subject><subject>Solar energy</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1z0FLwzAYBuAiCs4p_oVexIN0JmnSJOBFps7h1ImKw0v4mqUzrl1L0rnt39tR0ZOX7_0ODy-8QXCMUQ8jRM4rW_UokztBByMpI8zkZHf7JyTiUrL94MD7T4QwFzLpBBf9sqjAQW2_TOjr5XQTlllYwNoWyyKsypVxzbWLOqwd6LldzELIZ6Wz9UfhD4O9DHJvjn6yG7zeXL_0b6PR42DYvxxFmiZcRlrG0sSpIFxywsEATzUSOqU6JUmGU4Y5R0QQzEEAMzDFQiAUMwoYOOM07ganba92pffOZKpytgC3URip7WjVjFbN6EaetLICryHPHCy09X-c0oTSmDTurHUrm5vNf3VqPBy3rVGrra_N-leDm6uEx5ypt4eBmjxfvSdP90Ldxd-sLXQZ</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>Hohm, D. P.</creator><creator>Ropp, M. E.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200301</creationdate><title>Comparative study of maximum power point tracking algorithms</title><author>Hohm, D. P. ; Ropp, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4679-c939e3b8279727aea7bc08cb4cb26f1b5177028217a8a5ead18800354a1a75743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>digital control</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>experimental comparison</topic><topic>maximum power point tracking</topic><topic>microcontroller</topic><topic>MPPT efficiency</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>power electronics</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hohm, D. P.</creatorcontrib><creatorcontrib>Ropp, M. E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hohm, D. P.</au><au>Ropp, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study of maximum power point tracking algorithms</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2003-01</date><risdate>2003</risdate><volume>11</volume><issue>1</issue><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&amp;O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&amp;O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pip.459</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2003-01, Vol.11 (1), p.47-62
issn 1062-7995
1099-159X
language eng
recordid cdi_crossref_primary_10_1002_pip_459
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
digital control
Energy
Equipments, installations and applications
Exact sciences and technology
experimental comparison
maximum power point tracking
microcontroller
MPPT efficiency
Natural energy
Photovoltaic conversion
power electronics
Solar energy
title Comparative study of maximum power point tracking algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20of%20maximum%20power%20point%20tracking%20algorithms&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Hohm,%20D.%20P.&rft.date=2003-01&rft.volume=11&rft.issue=1&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.459&rft_dat=%3Cistex_cross%3Eark_67375_WNG_XSDZ6QM8_K%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true