Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams

In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2021-12, Vol.61 (12), p.2974-2984
Hauptverfasser: Song, Renda, Wu, Gaojian, Xu, Yuxuan, Chen, Junxiang, Zhang, Youchen, Weimin, Yang, Xie, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2984
container_issue 12
container_start_page 2974
container_title Polymer engineering and science
container_volume 61
creator Song, Renda
Wu, Gaojian
Xu, Yuxuan
Chen, Junxiang
Zhang, Youchen
Weimin, Yang
Xie, Pengcheng
description In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry. Experimental consideration.
doi_str_mv 10.1002/pen.25811
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pen_25811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689978626</galeid><sourcerecordid>A689978626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxoMouK5e-AYBbyw4u8n8ySaXpaxWKOpF70MmczKTkknWJEPZJ-hrm7oVLawk5HDC7zsfHD6E3lOyoYTU2wP4Td1xSl-gFe1aXtWsaV-iFSFNXTWc89foTUp3pLBNJ1boYW8M6IyDwdbjZPOCje2jdU5lGzwu9xDcEfJ0dOBh-9h8_NPhDBEOU55UoeFiOy8u23vlHAxYq9gXsVc-5KUHDK7YxDCr0UO2GqfJghusH7EJak5v0SujXIJ3T3WNbj_vb6-uq5vvX75eXd5Uum0ErXoYdkwxaggTXa1A804MbKC0JwIIH0xPWs4ZBcFqSnUvqOZCaLZjQw-taNbow2nsIYafC6Qs78ISfXGUNaO8rptd0_6lRuVAWm9CjkrPNml5ycq8HWdlrWtUnaHGspeoXPBgbPl-xm_O8OUMMFt9VvDpH0G_JOshlSfZccppVEtKz_GLE65jSCmCkYdoZxWPkhL5GA5ZwiF_h6Ow2xN7XzyP_wflj_23k-IXITq8tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618223734</pqid></control><display><type>article</type><title>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Renda ; Wu, Gaojian ; Xu, Yuxuan ; Chen, Junxiang ; Zhang, Youchen ; Weimin, Yang ; Xie, Pengcheng</creator><creatorcontrib>Song, Renda ; Wu, Gaojian ; Xu, Yuxuan ; Chen, Junxiang ; Zhang, Youchen ; Weimin, Yang ; Xie, Pengcheng</creatorcontrib><description>In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry. Experimental consideration.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25811</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aspect ratio ; composites ; Electric properties ; Electromagnetic radiation ; Electromagnetic shielding ; Extrusion molding ; Fibrillation ; foam injection molding ; Frequency ranges ; Hot drawing ; in situ fibrillation ; Injection molding ; Injection molding machines ; Magnetic properties ; Multi wall carbon nanotubes ; Nanocomposites ; Nanotubes ; Photomicrographs ; Plastic foam ; Polyethylene ; Polyethylene terephthalate ; Rheological properties ; Rheology ; Wave reflection</subject><ispartof>Polymer engineering and science, 2021-12, Vol.61 (12), p.2974-2984</ispartof><rights>2021 Society of Plastics Engineers</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</citedby><cites>FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</cites><orcidid>0000-0001-9689-6857 ; 0000-0003-3449-0514 ; 0000-0003-2804-6695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Song, Renda</creatorcontrib><creatorcontrib>Wu, Gaojian</creatorcontrib><creatorcontrib>Xu, Yuxuan</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Zhang, Youchen</creatorcontrib><creatorcontrib>Weimin, Yang</creatorcontrib><creatorcontrib>Xie, Pengcheng</creatorcontrib><title>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</title><title>Polymer engineering and science</title><description>In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry. Experimental consideration.</description><subject>Aspect ratio</subject><subject>composites</subject><subject>Electric properties</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic shielding</subject><subject>Extrusion molding</subject><subject>Fibrillation</subject><subject>foam injection molding</subject><subject>Frequency ranges</subject><subject>Hot drawing</subject><subject>in situ fibrillation</subject><subject>Injection molding</subject><subject>Injection molding machines</subject><subject>Magnetic properties</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Photomicrographs</subject><subject>Plastic foam</subject><subject>Polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Wave reflection</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxoMouK5e-AYBbyw4u8n8ySaXpaxWKOpF70MmczKTkknWJEPZJ-hrm7oVLawk5HDC7zsfHD6E3lOyoYTU2wP4Td1xSl-gFe1aXtWsaV-iFSFNXTWc89foTUp3pLBNJ1boYW8M6IyDwdbjZPOCje2jdU5lGzwu9xDcEfJ0dOBh-9h8_NPhDBEOU55UoeFiOy8u23vlHAxYq9gXsVc-5KUHDK7YxDCr0UO2GqfJghusH7EJak5v0SujXIJ3T3WNbj_vb6-uq5vvX75eXd5Uum0ErXoYdkwxaggTXa1A804MbKC0JwIIH0xPWs4ZBcFqSnUvqOZCaLZjQw-taNbow2nsIYafC6Qs78ISfXGUNaO8rptd0_6lRuVAWm9CjkrPNml5ycq8HWdlrWtUnaHGspeoXPBgbPl-xm_O8OUMMFt9VvDpH0G_JOshlSfZccppVEtKz_GLE65jSCmCkYdoZxWPkhL5GA5ZwiF_h6Ow2xN7XzyP_wflj_23k-IXITq8tg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Song, Renda</creator><creator>Wu, Gaojian</creator><creator>Xu, Yuxuan</creator><creator>Chen, Junxiang</creator><creator>Zhang, Youchen</creator><creator>Weimin, Yang</creator><creator>Xie, Pengcheng</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9689-6857</orcidid><orcidid>https://orcid.org/0000-0003-3449-0514</orcidid><orcidid>https://orcid.org/0000-0003-2804-6695</orcidid></search><sort><creationdate>202112</creationdate><title>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</title><author>Song, Renda ; Wu, Gaojian ; Xu, Yuxuan ; Chen, Junxiang ; Zhang, Youchen ; Weimin, Yang ; Xie, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>composites</topic><topic>Electric properties</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic shielding</topic><topic>Extrusion molding</topic><topic>Fibrillation</topic><topic>foam injection molding</topic><topic>Frequency ranges</topic><topic>Hot drawing</topic><topic>in situ fibrillation</topic><topic>Injection molding</topic><topic>Injection molding machines</topic><topic>Magnetic properties</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Photomicrographs</topic><topic>Plastic foam</topic><topic>Polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Renda</creatorcontrib><creatorcontrib>Wu, Gaojian</creatorcontrib><creatorcontrib>Xu, Yuxuan</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Zhang, Youchen</creatorcontrib><creatorcontrib>Weimin, Yang</creatorcontrib><creatorcontrib>Xie, Pengcheng</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Renda</au><au>Wu, Gaojian</au><au>Xu, Yuxuan</au><au>Chen, Junxiang</au><au>Zhang, Youchen</au><au>Weimin, Yang</au><au>Xie, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-12</date><risdate>2021</risdate><volume>61</volume><issue>12</issue><spage>2974</spage><epage>2984</epage><pages>2974-2984</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry. Experimental consideration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25811</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9689-6857</orcidid><orcidid>https://orcid.org/0000-0003-3449-0514</orcidid><orcidid>https://orcid.org/0000-0003-2804-6695</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2021-12, Vol.61 (12), p.2974-2984
issn 0032-3888
1548-2634
language eng
recordid cdi_crossref_primary_10_1002_pen_25811
source Wiley Online Library Journals Frontfile Complete
subjects Aspect ratio
composites
Electric properties
Electromagnetic radiation
Electromagnetic shielding
Extrusion molding
Fibrillation
foam injection molding
Frequency ranges
Hot drawing
in situ fibrillation
Injection molding
Injection molding machines
Magnetic properties
Multi wall carbon nanotubes
Nanocomposites
Nanotubes
Photomicrographs
Plastic foam
Polyethylene
Polyethylene terephthalate
Rheological properties
Rheology
Wave reflection
title Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20in%20situ%20fibrillation%20on%20polyethylene/poly(ethylene%20terephthalate)/multiwalled%20carbon%20nanotube%20electromagnetic%20shielding%20foams&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Song,%20Renda&rft.date=2021-12&rft.volume=61&rft.issue=12&rft.spage=2974&rft.epage=2984&rft.pages=2974-2984&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25811&rft_dat=%3Cgale_proqu%3EA689978626%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618223734&rft_id=info:pmid/&rft_galeid=A689978626&rfr_iscdi=true