Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams
In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scannin...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2021-12, Vol.61 (12), p.2974-2984 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2984 |
---|---|
container_issue | 12 |
container_start_page | 2974 |
container_title | Polymer engineering and science |
container_volume | 61 |
creator | Song, Renda Wu, Gaojian Xu, Yuxuan Chen, Junxiang Zhang, Youchen Weimin, Yang Xie, Pengcheng |
description | In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry.
Experimental consideration. |
doi_str_mv | 10.1002/pen.25811 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pen_25811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689978626</galeid><sourcerecordid>A689978626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxoMouK5e-AYBbyw4u8n8ySaXpaxWKOpF70MmczKTkknWJEPZJ-hrm7oVLawk5HDC7zsfHD6E3lOyoYTU2wP4Td1xSl-gFe1aXtWsaV-iFSFNXTWc89foTUp3pLBNJ1boYW8M6IyDwdbjZPOCje2jdU5lGzwu9xDcEfJ0dOBh-9h8_NPhDBEOU55UoeFiOy8u23vlHAxYq9gXsVc-5KUHDK7YxDCr0UO2GqfJghusH7EJak5v0SujXIJ3T3WNbj_vb6-uq5vvX75eXd5Uum0ErXoYdkwxaggTXa1A804MbKC0JwIIH0xPWs4ZBcFqSnUvqOZCaLZjQw-taNbow2nsIYafC6Qs78ISfXGUNaO8rptd0_6lRuVAWm9CjkrPNml5ycq8HWdlrWtUnaHGspeoXPBgbPl-xm_O8OUMMFt9VvDpH0G_JOshlSfZccppVEtKz_GLE65jSCmCkYdoZxWPkhL5GA5ZwiF_h6Ow2xN7XzyP_wflj_23k-IXITq8tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618223734</pqid></control><display><type>article</type><title>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Renda ; Wu, Gaojian ; Xu, Yuxuan ; Chen, Junxiang ; Zhang, Youchen ; Weimin, Yang ; Xie, Pengcheng</creator><creatorcontrib>Song, Renda ; Wu, Gaojian ; Xu, Yuxuan ; Chen, Junxiang ; Zhang, Youchen ; Weimin, Yang ; Xie, Pengcheng</creatorcontrib><description>In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry.
Experimental consideration.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25811</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aspect ratio ; composites ; Electric properties ; Electromagnetic radiation ; Electromagnetic shielding ; Extrusion molding ; Fibrillation ; foam injection molding ; Frequency ranges ; Hot drawing ; in situ fibrillation ; Injection molding ; Injection molding machines ; Magnetic properties ; Multi wall carbon nanotubes ; Nanocomposites ; Nanotubes ; Photomicrographs ; Plastic foam ; Polyethylene ; Polyethylene terephthalate ; Rheological properties ; Rheology ; Wave reflection</subject><ispartof>Polymer engineering and science, 2021-12, Vol.61 (12), p.2974-2984</ispartof><rights>2021 Society of Plastics Engineers</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</citedby><cites>FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</cites><orcidid>0000-0001-9689-6857 ; 0000-0003-3449-0514 ; 0000-0003-2804-6695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Song, Renda</creatorcontrib><creatorcontrib>Wu, Gaojian</creatorcontrib><creatorcontrib>Xu, Yuxuan</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Zhang, Youchen</creatorcontrib><creatorcontrib>Weimin, Yang</creatorcontrib><creatorcontrib>Xie, Pengcheng</creatorcontrib><title>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</title><title>Polymer engineering and science</title><description>In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry.
Experimental consideration.</description><subject>Aspect ratio</subject><subject>composites</subject><subject>Electric properties</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic shielding</subject><subject>Extrusion molding</subject><subject>Fibrillation</subject><subject>foam injection molding</subject><subject>Frequency ranges</subject><subject>Hot drawing</subject><subject>in situ fibrillation</subject><subject>Injection molding</subject><subject>Injection molding machines</subject><subject>Magnetic properties</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Photomicrographs</subject><subject>Plastic foam</subject><subject>Polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Wave reflection</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxoMouK5e-AYBbyw4u8n8ySaXpaxWKOpF70MmczKTkknWJEPZJ-hrm7oVLawk5HDC7zsfHD6E3lOyoYTU2wP4Td1xSl-gFe1aXtWsaV-iFSFNXTWc89foTUp3pLBNJ1boYW8M6IyDwdbjZPOCje2jdU5lGzwu9xDcEfJ0dOBh-9h8_NPhDBEOU55UoeFiOy8u23vlHAxYq9gXsVc-5KUHDK7YxDCr0UO2GqfJghusH7EJak5v0SujXIJ3T3WNbj_vb6-uq5vvX75eXd5Uum0ErXoYdkwxaggTXa1A804MbKC0JwIIH0xPWs4ZBcFqSnUvqOZCaLZjQw-taNbow2nsIYafC6Qs78ISfXGUNaO8rptd0_6lRuVAWm9CjkrPNml5ycq8HWdlrWtUnaHGspeoXPBgbPl-xm_O8OUMMFt9VvDpH0G_JOshlSfZccppVEtKz_GLE65jSCmCkYdoZxWPkhL5GA5ZwiF_h6Ow2xN7XzyP_wflj_23k-IXITq8tg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Song, Renda</creator><creator>Wu, Gaojian</creator><creator>Xu, Yuxuan</creator><creator>Chen, Junxiang</creator><creator>Zhang, Youchen</creator><creator>Weimin, Yang</creator><creator>Xie, Pengcheng</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9689-6857</orcidid><orcidid>https://orcid.org/0000-0003-3449-0514</orcidid><orcidid>https://orcid.org/0000-0003-2804-6695</orcidid></search><sort><creationdate>202112</creationdate><title>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</title><author>Song, Renda ; Wu, Gaojian ; Xu, Yuxuan ; Chen, Junxiang ; Zhang, Youchen ; Weimin, Yang ; Xie, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4391-bed76a61f06952aec859d6d11b09e08dfb048861e96211cb91c899c676dbe493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>composites</topic><topic>Electric properties</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic shielding</topic><topic>Extrusion molding</topic><topic>Fibrillation</topic><topic>foam injection molding</topic><topic>Frequency ranges</topic><topic>Hot drawing</topic><topic>in situ fibrillation</topic><topic>Injection molding</topic><topic>Injection molding machines</topic><topic>Magnetic properties</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Photomicrographs</topic><topic>Plastic foam</topic><topic>Polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Renda</creatorcontrib><creatorcontrib>Wu, Gaojian</creatorcontrib><creatorcontrib>Xu, Yuxuan</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Zhang, Youchen</creatorcontrib><creatorcontrib>Weimin, Yang</creatorcontrib><creatorcontrib>Xie, Pengcheng</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Renda</au><au>Wu, Gaojian</au><au>Xu, Yuxuan</au><au>Chen, Junxiang</au><au>Zhang, Youchen</au><au>Weimin, Yang</au><au>Xie, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-12</date><risdate>2021</risdate><volume>61</volume><issue>12</issue><spage>2974</spage><epage>2984</epage><pages>2974-2984</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In this study, polyethylene (PP)/polyethylene terephthalate (PET)/multiwalled carbon nanotube (MWCNT) nanocomposites with nanofibrillary structure were processed by hot drawing‐assisted extrusion technology, and nonfoaming and microfoaming samples were processed by injection molding machine. Scanning electron microscope micrographs showed that when PET content was 2.5 wt%, PET fibers had a larger aspect ratio, which brought an outstanding promotion on microfoaming of PP matrix, and further details were provided by DSC and rheology analysis. When foaming sample loaded with 2.5 wt% PET and 3 wt% MWCNT, the best shielding effectiveness achieved 29.91 dB·cm3·g−1 in the test frequency range about 8.2–12.4 GHz. The results proved that the introduction of PET fibers optimized the microfoaming effect, and the uniform cell structure promoted the MWCNT dispersion and internal reflection of electromagnetic wave. Therefore, the shielding property is absorption‐dominated type and meets the requirements of lightweight and ultraefficient shielding demand of industry.
Experimental consideration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25811</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9689-6857</orcidid><orcidid>https://orcid.org/0000-0003-3449-0514</orcidid><orcidid>https://orcid.org/0000-0003-2804-6695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2021-12, Vol.61 (12), p.2974-2984 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pen_25811 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aspect ratio composites Electric properties Electromagnetic radiation Electromagnetic shielding Extrusion molding Fibrillation foam injection molding Frequency ranges Hot drawing in situ fibrillation Injection molding Injection molding machines Magnetic properties Multi wall carbon nanotubes Nanocomposites Nanotubes Photomicrographs Plastic foam Polyethylene Polyethylene terephthalate Rheological properties Rheology Wave reflection |
title | Effect of in situ fibrillation on polyethylene/poly(ethylene terephthalate)/multiwalled carbon nanotube electromagnetic shielding foams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20in%20situ%20fibrillation%20on%20polyethylene/poly(ethylene%20terephthalate)/multiwalled%20carbon%20nanotube%20electromagnetic%20shielding%20foams&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Song,%20Renda&rft.date=2021-12&rft.volume=61&rft.issue=12&rft.spage=2974&rft.epage=2984&rft.pages=2974-2984&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25811&rft_dat=%3Cgale_proqu%3EA689978626%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618223734&rft_id=info:pmid/&rft_galeid=A689978626&rfr_iscdi=true |