Can we identify allergic rhinitis from administrative data: A validation study

Background Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacoepidemiology and drug safety 2020-11, Vol.29 (11), p.1423-1431
Hauptverfasser: Leth‐Møller, Katja Biering, Skaaby, Tea, Madsen, Flemming, Petersen, Janne, Linneberg, Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1431
container_issue 11
container_start_page 1423
container_title Pharmacoepidemiology and drug safety
container_volume 29
creator Leth‐Møller, Katja Biering
Skaaby, Tea
Madsen, Flemming
Petersen, Janne
Linneberg, Allan
description Background Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis. Methods Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods. Results Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015. Conclusion Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).
doi_str_mv 10.1002/pds.5120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pds_5120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445426322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgTwh4401nkqZp453MTxgqqNcha040ox8zaTf6702dIAhenfdwHl4OD0KnlMwoIexibcIso4zsoQklUiY0y_L9MWdpUmRCHqKjEFaExJvkE_Q41w3eAnYGms7ZAeuqAv_uSuw_XOM6F7D1bY21qeMaOq87twFsdKcv8RXe6MrF7NoGh643wzE6sLoKcPIzp-jt9uZ1fp8snu4e5leLpEyZIIkoWcEz0HRZCMaXWnMqQVohAVJjUiJpbk1eGK3BGtBG5rKkpARWSCEzy9IpOt_1rn372UPoVO1CCVWlG2j7oBjnGWciZSN69gddtb1v4neREtERZyn9LSx9G4IHq9be1doPihI1ilVRrBrFRjTZoVtXwfAvp56vX775L-djeWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461094231</pqid></control><display><type>article</type><title>Can we identify allergic rhinitis from administrative data: A validation study</title><source>Access via Wiley Online Library</source><creator>Leth‐Møller, Katja Biering ; Skaaby, Tea ; Madsen, Flemming ; Petersen, Janne ; Linneberg, Allan</creator><creatorcontrib>Leth‐Møller, Katja Biering ; Skaaby, Tea ; Madsen, Flemming ; Petersen, Janne ; Linneberg, Allan</creatorcontrib><description>Background Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis. Methods Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods. Results Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015. Conclusion Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).</description><identifier>ISSN: 1053-8569</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.5120</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Allergic rhinitis ; Antihistamines ; Corticosteroids ; Histamine ; Immunoglobulin E ; pharmacoepidemiology ; prescription algorithms ; real world evidence ; sensitivity ; validation</subject><ispartof>Pharmacoepidemiology and drug safety, 2020-11, Vol.29 (11), p.1423-1431</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</citedby><cites>FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</cites><orcidid>0000-0002-1624-9789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.5120$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.5120$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Leth‐Møller, Katja Biering</creatorcontrib><creatorcontrib>Skaaby, Tea</creatorcontrib><creatorcontrib>Madsen, Flemming</creatorcontrib><creatorcontrib>Petersen, Janne</creatorcontrib><creatorcontrib>Linneberg, Allan</creatorcontrib><title>Can we identify allergic rhinitis from administrative data: A validation study</title><title>Pharmacoepidemiology and drug safety</title><description>Background Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis. Methods Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods. Results Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015. Conclusion Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).</description><subject>Algorithms</subject><subject>Allergic rhinitis</subject><subject>Antihistamines</subject><subject>Corticosteroids</subject><subject>Histamine</subject><subject>Immunoglobulin E</subject><subject>pharmacoepidemiology</subject><subject>prescription algorithms</subject><subject>real world evidence</subject><subject>sensitivity</subject><subject>validation</subject><issn>1053-8569</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKfgTwh4401nkqZp453MTxgqqNcha040ox8zaTf6702dIAhenfdwHl4OD0KnlMwoIexibcIso4zsoQklUiY0y_L9MWdpUmRCHqKjEFaExJvkE_Q41w3eAnYGms7ZAeuqAv_uSuw_XOM6F7D1bY21qeMaOq87twFsdKcv8RXe6MrF7NoGh643wzE6sLoKcPIzp-jt9uZ1fp8snu4e5leLpEyZIIkoWcEz0HRZCMaXWnMqQVohAVJjUiJpbk1eGK3BGtBG5rKkpARWSCEzy9IpOt_1rn372UPoVO1CCVWlG2j7oBjnGWciZSN69gddtb1v4neREtERZyn9LSx9G4IHq9be1doPihI1ilVRrBrFRjTZoVtXwfAvp56vX775L-djeWE</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Leth‐Møller, Katja Biering</creator><creator>Skaaby, Tea</creator><creator>Madsen, Flemming</creator><creator>Petersen, Janne</creator><creator>Linneberg, Allan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1624-9789</orcidid></search><sort><creationdate>202011</creationdate><title>Can we identify allergic rhinitis from administrative data: A validation study</title><author>Leth‐Møller, Katja Biering ; Skaaby, Tea ; Madsen, Flemming ; Petersen, Janne ; Linneberg, Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Allergic rhinitis</topic><topic>Antihistamines</topic><topic>Corticosteroids</topic><topic>Histamine</topic><topic>Immunoglobulin E</topic><topic>pharmacoepidemiology</topic><topic>prescription algorithms</topic><topic>real world evidence</topic><topic>sensitivity</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leth‐Møller, Katja Biering</creatorcontrib><creatorcontrib>Skaaby, Tea</creatorcontrib><creatorcontrib>Madsen, Flemming</creatorcontrib><creatorcontrib>Petersen, Janne</creatorcontrib><creatorcontrib>Linneberg, Allan</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leth‐Møller, Katja Biering</au><au>Skaaby, Tea</au><au>Madsen, Flemming</au><au>Petersen, Janne</au><au>Linneberg, Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can we identify allergic rhinitis from administrative data: A validation study</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><date>2020-11</date><risdate>2020</risdate><volume>29</volume><issue>11</issue><spage>1423</spage><epage>1431</epage><pages>1423-1431</pages><issn>1053-8569</issn><eissn>1099-1557</eissn><abstract>Background Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis. Methods Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods. Results Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015. Conclusion Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pds.5120</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1624-9789</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-8569
ispartof Pharmacoepidemiology and drug safety, 2020-11, Vol.29 (11), p.1423-1431
issn 1053-8569
1099-1557
language eng
recordid cdi_crossref_primary_10_1002_pds_5120
source Access via Wiley Online Library
subjects Algorithms
Allergic rhinitis
Antihistamines
Corticosteroids
Histamine
Immunoglobulin E
pharmacoepidemiology
prescription algorithms
real world evidence
sensitivity
validation
title Can we identify allergic rhinitis from administrative data: A validation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20we%20identify%20allergic%20rhinitis%20from%20administrative%20data:%20A%20validation%20study&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Leth%E2%80%90M%C3%B8ller,%20Katja%20Biering&rft.date=2020-11&rft.volume=29&rft.issue=11&rft.spage=1423&rft.epage=1431&rft.pages=1423-1431&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.5120&rft_dat=%3Cproquest_cross%3E2445426322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461094231&rft_id=info:pmid/&rfr_iscdi=true