Can we identify allergic rhinitis from administrative data: A validation study
Background Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish na...
Gespeichert in:
Veröffentlicht in: | Pharmacoepidemiology and drug safety 2020-11, Vol.29 (11), p.1423-1431 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1431 |
---|---|
container_issue | 11 |
container_start_page | 1423 |
container_title | Pharmacoepidemiology and drug safety |
container_volume | 29 |
creator | Leth‐Møller, Katja Biering Skaaby, Tea Madsen, Flemming Petersen, Janne Linneberg, Allan |
description | Background
Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis.
Methods
Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods.
Results
Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015.
Conclusion
Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom). |
doi_str_mv | 10.1002/pds.5120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pds_5120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445426322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgTwh4401nkqZp453MTxgqqNcha040ox8zaTf6702dIAhenfdwHl4OD0KnlMwoIexibcIso4zsoQklUiY0y_L9MWdpUmRCHqKjEFaExJvkE_Q41w3eAnYGms7ZAeuqAv_uSuw_XOM6F7D1bY21qeMaOq87twFsdKcv8RXe6MrF7NoGh643wzE6sLoKcPIzp-jt9uZ1fp8snu4e5leLpEyZIIkoWcEz0HRZCMaXWnMqQVohAVJjUiJpbk1eGK3BGtBG5rKkpARWSCEzy9IpOt_1rn372UPoVO1CCVWlG2j7oBjnGWciZSN69gddtb1v4neREtERZyn9LSx9G4IHq9be1doPihI1ilVRrBrFRjTZoVtXwfAvp56vX775L-djeWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461094231</pqid></control><display><type>article</type><title>Can we identify allergic rhinitis from administrative data: A validation study</title><source>Access via Wiley Online Library</source><creator>Leth‐Møller, Katja Biering ; Skaaby, Tea ; Madsen, Flemming ; Petersen, Janne ; Linneberg, Allan</creator><creatorcontrib>Leth‐Møller, Katja Biering ; Skaaby, Tea ; Madsen, Flemming ; Petersen, Janne ; Linneberg, Allan</creatorcontrib><description>Background
Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis.
Methods
Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods.
Results
Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015.
Conclusion
Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).</description><identifier>ISSN: 1053-8569</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.5120</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Allergic rhinitis ; Antihistamines ; Corticosteroids ; Histamine ; Immunoglobulin E ; pharmacoepidemiology ; prescription algorithms ; real world evidence ; sensitivity ; validation</subject><ispartof>Pharmacoepidemiology and drug safety, 2020-11, Vol.29 (11), p.1423-1431</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</citedby><cites>FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</cites><orcidid>0000-0002-1624-9789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.5120$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.5120$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Leth‐Møller, Katja Biering</creatorcontrib><creatorcontrib>Skaaby, Tea</creatorcontrib><creatorcontrib>Madsen, Flemming</creatorcontrib><creatorcontrib>Petersen, Janne</creatorcontrib><creatorcontrib>Linneberg, Allan</creatorcontrib><title>Can we identify allergic rhinitis from administrative data: A validation study</title><title>Pharmacoepidemiology and drug safety</title><description>Background
Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis.
Methods
Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods.
Results
Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015.
Conclusion
Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).</description><subject>Algorithms</subject><subject>Allergic rhinitis</subject><subject>Antihistamines</subject><subject>Corticosteroids</subject><subject>Histamine</subject><subject>Immunoglobulin E</subject><subject>pharmacoepidemiology</subject><subject>prescription algorithms</subject><subject>real world evidence</subject><subject>sensitivity</subject><subject>validation</subject><issn>1053-8569</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKfgTwh4401nkqZp453MTxgqqNcha040ox8zaTf6702dIAhenfdwHl4OD0KnlMwoIexibcIso4zsoQklUiY0y_L9MWdpUmRCHqKjEFaExJvkE_Q41w3eAnYGms7ZAeuqAv_uSuw_XOM6F7D1bY21qeMaOq87twFsdKcv8RXe6MrF7NoGh643wzE6sLoKcPIzp-jt9uZ1fp8snu4e5leLpEyZIIkoWcEz0HRZCMaXWnMqQVohAVJjUiJpbk1eGK3BGtBG5rKkpARWSCEzy9IpOt_1rn372UPoVO1CCVWlG2j7oBjnGWciZSN69gddtb1v4neREtERZyn9LSx9G4IHq9be1doPihI1ilVRrBrFRjTZoVtXwfAvp56vX775L-djeWE</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Leth‐Møller, Katja Biering</creator><creator>Skaaby, Tea</creator><creator>Madsen, Flemming</creator><creator>Petersen, Janne</creator><creator>Linneberg, Allan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1624-9789</orcidid></search><sort><creationdate>202011</creationdate><title>Can we identify allergic rhinitis from administrative data: A validation study</title><author>Leth‐Møller, Katja Biering ; Skaaby, Tea ; Madsen, Flemming ; Petersen, Janne ; Linneberg, Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3260-6c2845ea1b8624baa419e9f69ee3dd30917fd78daaefdead979c10ce289695f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Allergic rhinitis</topic><topic>Antihistamines</topic><topic>Corticosteroids</topic><topic>Histamine</topic><topic>Immunoglobulin E</topic><topic>pharmacoepidemiology</topic><topic>prescription algorithms</topic><topic>real world evidence</topic><topic>sensitivity</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leth‐Møller, Katja Biering</creatorcontrib><creatorcontrib>Skaaby, Tea</creatorcontrib><creatorcontrib>Madsen, Flemming</creatorcontrib><creatorcontrib>Petersen, Janne</creatorcontrib><creatorcontrib>Linneberg, Allan</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leth‐Møller, Katja Biering</au><au>Skaaby, Tea</au><au>Madsen, Flemming</au><au>Petersen, Janne</au><au>Linneberg, Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can we identify allergic rhinitis from administrative data: A validation study</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><date>2020-11</date><risdate>2020</risdate><volume>29</volume><issue>11</issue><spage>1423</spage><epage>1431</epage><pages>1423-1431</pages><issn>1053-8569</issn><eissn>1099-1557</eissn><abstract>Background
Important insights on, for example, prevalence, disease progression, and treatment of allergic rhinitis can be obtained from large‐scale database studies if researchers are able to identify allergic individuals. We aimed to assess the validity of 13 different algorithms based on Danish nationwide prescription and/or hospital data to identify adults with allergic rhinitis.
Methods
Our primary gold standard of allergic rhinitis was a positive serum specific IgE (≥0.35) and self‐reported nasal symptoms retrieved from two general health examination studies conducted in Danish adults (18‐69 years) during 2006 to 2008 (n = 3416) and 2012 to 2015 (n = 7237). The secondary gold standard of allergic rhinitis was self‐reported physician diagnosis. We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value, and corresponding 95% confidence intervals (95% CI) for each register‐based algorithm in the two time periods.
Results
Sensitivity (≤0.40) was low for all algorithms irrespective of definition of allergic rhinitis (gold standard) or time period. The highest PPVs were obtained for algorithms requiring both antihistamines and intranasal corticosteroids; yielding a PPV of 0.69 (0.62‐0.75) and a corresponding sensitivity of 0.10 (0.09‐0.12) for the primary gold standard of allergic rhinitis in 2012 to 2015.
Conclusion
Algorithms based on both antihistamines and intranasal corticosteroids yielded the highest PPVs. However, the PPVs were still moderate and came at the expense of low sensitivity when applying the strict primary gold standard (sIgE and nasal symptom).</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pds.5120</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1624-9789</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8569 |
ispartof | Pharmacoepidemiology and drug safety, 2020-11, Vol.29 (11), p.1423-1431 |
issn | 1053-8569 1099-1557 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pds_5120 |
source | Access via Wiley Online Library |
subjects | Algorithms Allergic rhinitis Antihistamines Corticosteroids Histamine Immunoglobulin E pharmacoepidemiology prescription algorithms real world evidence sensitivity validation |
title | Can we identify allergic rhinitis from administrative data: A validation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20we%20identify%20allergic%20rhinitis%20from%20administrative%20data:%20A%20validation%20study&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Leth%E2%80%90M%C3%B8ller,%20Katja%20Biering&rft.date=2020-11&rft.volume=29&rft.issue=11&rft.spage=1423&rft.epage=1431&rft.pages=1423-1431&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.5120&rft_dat=%3Cproquest_cross%3E2445426322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461094231&rft_id=info:pmid/&rfr_iscdi=true |