Study on Mode I interlaminar fracture behavior of automated fiber placement in situ consolidation thermoplastic composite considering the influence of roller compaction pressure
This study delved into the Mode I fracture behavior of laser‐assisted automated fiber placement (AFP) in situ consolidated thermoplastic composite laminates under different curing pressures. In compliance with ASTM D5528 standards, T700 carbon fiber reinforced polyether ether ketone (T700‐CF/PEEK) d...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2024-09, Vol.46 (2), p.1454-1468 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1468 |
---|---|
container_issue | 2 |
container_start_page | 1454 |
container_title | Polymer composites |
container_volume | 46 |
creator | Liu, Chen He, Chen Zou, Zhongfeng Li, Yong |
description | This study delved into the Mode I fracture behavior of laser‐assisted automated fiber placement (AFP) in situ consolidated thermoplastic composite laminates under different curing pressures. In compliance with ASTM D5528 standards, T700 carbon fiber reinforced polyether ether ketone (T700‐CF/PEEK) double cantilever beam (DCB) specimens were fabricated and segregated into three test groups subjected to distinct roller pressures: DCB‐100N, DCB‐500N, and DCB‐1500N. The fracture toughness of these specimens was then inversely characterized by employing an optimized ASTM‐based data reduction methodology. A kind of tri‐linear cohesive zone model (CZM) incorporating the fracture process zone (FPZ) length was developed to simulate delamination behavior, showing good agreement between experimental results and simulation predictions. Compared with the other two test groups, DCB‐1500N specimens have more inter‐laminar bridging fibers and higher propagated toughness. Although the length of fiber bridging area is shorter, the fiber bridging density is higher, so the influence of fiber bridging on toughness is more pronounced in the DCB‐1500N specimens. This study provides theoretical guidance for the impact resistance design of thermoplastic composites (TPCs), offering valuable insights into the intrinsic relationship between material processing and fracture damage mechanisms.
Highlights
Explore the characteristic interlaminar fracture behavior of thermoplastic laminates made by AFP under different curing pressures.
Develop a more accurate tri‐linear CZM model to describe the plastic deformation at crack tips and fiber bridging during the delamination process.
Unveil the intrinsic relationship between AFP curing pressure and ductile fracture mechanism of thermoplastic composites.
Characterization and analysis process of fracture toughness of in situ consolidation thermoplastic composite materials with automated fiber placement under different placement pressures. |
doi_str_mv | 10.1002/pc.29050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pc_29050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3159183011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1840-5c6283181f2866e9dbf88ba4dff582eb3fc8c87366a06f26da25eb8c12ae9cd53</originalsourceid><addsrcrecordid>eNp10c1KAzEQB_AgCtYq-AgBL162Jtlumj1K8aNQUVDPSzaZ2JTdzZpklT6Wb2i29eppDvOb_wwMQpeUzCgh7KZXM1aSghyhCS3mIiMFL4_RhLAFy0ReLk7RWQjbJCnn-QT9vMZB77Dr8JPTgFfYdhF8I1vbSY-NlyoOHnANG_llncfOYDlE18oIGhtbg8d9IxW00MU0i4ONA1auC66xWkabguMGfOuSCtGq1Gt7lxTsldXgbfcxmjRtmgE6BeMS75omZY86nTDG9B5CSLecoxMjmwAXf3WK3u_v3paP2fr5YbW8XWeKijnJCsWZyKmghgnOodS1EaKWc21MIRjUuVFCiUXOuSTcMK4lK6AWijIJpdJFPkVXh9zeu88BQqy2bvBdWlnltCipyAmlSV0flPIuBA-m6r1tpd9VlFTjQ6peVfuHJJod6LdtYPevq16WB_8L6d-RSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159183011</pqid></control><display><type>article</type><title>Study on Mode I interlaminar fracture behavior of automated fiber placement in situ consolidation thermoplastic composite considering the influence of roller compaction pressure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Chen ; He, Chen ; Zou, Zhongfeng ; Li, Yong</creator><creatorcontrib>Liu, Chen ; He, Chen ; Zou, Zhongfeng ; Li, Yong</creatorcontrib><description>This study delved into the Mode I fracture behavior of laser‐assisted automated fiber placement (AFP) in situ consolidated thermoplastic composite laminates under different curing pressures. In compliance with ASTM D5528 standards, T700 carbon fiber reinforced polyether ether ketone (T700‐CF/PEEK) double cantilever beam (DCB) specimens were fabricated and segregated into three test groups subjected to distinct roller pressures: DCB‐100N, DCB‐500N, and DCB‐1500N. The fracture toughness of these specimens was then inversely characterized by employing an optimized ASTM‐based data reduction methodology. A kind of tri‐linear cohesive zone model (CZM) incorporating the fracture process zone (FPZ) length was developed to simulate delamination behavior, showing good agreement between experimental results and simulation predictions. Compared with the other two test groups, DCB‐1500N specimens have more inter‐laminar bridging fibers and higher propagated toughness. Although the length of fiber bridging area is shorter, the fiber bridging density is higher, so the influence of fiber bridging on toughness is more pronounced in the DCB‐1500N specimens. This study provides theoretical guidance for the impact resistance design of thermoplastic composites (TPCs), offering valuable insights into the intrinsic relationship between material processing and fracture damage mechanisms.
Highlights
Explore the characteristic interlaminar fracture behavior of thermoplastic laminates made by AFP under different curing pressures.
Develop a more accurate tri‐linear CZM model to describe the plastic deformation at crack tips and fiber bridging during the delamination process.
Unveil the intrinsic relationship between AFP curing pressure and ductile fracture mechanism of thermoplastic composites.
Characterization and analysis process of fracture toughness of in situ consolidation thermoplastic composite materials with automated fiber placement under different placement pressures.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.29050</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>automated fiber placement ; Automation ; Cantilever beams ; Carbon fiber reinforced plastics ; cohesive zone model ; Composite materials ; Crack tips ; Curing ; Deformation mechanisms ; Delamination ; double cantilever beam test ; Ductile fracture ; Fiber placement ; Fiber reinforced polymers ; Fracture mechanics ; Fracture toughness ; Heat treating ; Impact resistance ; Impact strength ; Laminates ; Mode‐I fracture toughness ; Plastic deformation ; Polyether ether ketones ; Thermoplastic composites</subject><ispartof>Polymer composites, 2024-09, Vol.46 (2), p.1454-1468</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2025 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1840-5c6283181f2866e9dbf88ba4dff582eb3fc8c87366a06f26da25eb8c12ae9cd53</cites><orcidid>0009-0000-8884-3413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.29050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.29050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>He, Chen</creatorcontrib><creatorcontrib>Zou, Zhongfeng</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><title>Study on Mode I interlaminar fracture behavior of automated fiber placement in situ consolidation thermoplastic composite considering the influence of roller compaction pressure</title><title>Polymer composites</title><description>This study delved into the Mode I fracture behavior of laser‐assisted automated fiber placement (AFP) in situ consolidated thermoplastic composite laminates under different curing pressures. In compliance with ASTM D5528 standards, T700 carbon fiber reinforced polyether ether ketone (T700‐CF/PEEK) double cantilever beam (DCB) specimens were fabricated and segregated into three test groups subjected to distinct roller pressures: DCB‐100N, DCB‐500N, and DCB‐1500N. The fracture toughness of these specimens was then inversely characterized by employing an optimized ASTM‐based data reduction methodology. A kind of tri‐linear cohesive zone model (CZM) incorporating the fracture process zone (FPZ) length was developed to simulate delamination behavior, showing good agreement between experimental results and simulation predictions. Compared with the other two test groups, DCB‐1500N specimens have more inter‐laminar bridging fibers and higher propagated toughness. Although the length of fiber bridging area is shorter, the fiber bridging density is higher, so the influence of fiber bridging on toughness is more pronounced in the DCB‐1500N specimens. This study provides theoretical guidance for the impact resistance design of thermoplastic composites (TPCs), offering valuable insights into the intrinsic relationship between material processing and fracture damage mechanisms.
Highlights
Explore the characteristic interlaminar fracture behavior of thermoplastic laminates made by AFP under different curing pressures.
Develop a more accurate tri‐linear CZM model to describe the plastic deformation at crack tips and fiber bridging during the delamination process.
Unveil the intrinsic relationship between AFP curing pressure and ductile fracture mechanism of thermoplastic composites.
Characterization and analysis process of fracture toughness of in situ consolidation thermoplastic composite materials with automated fiber placement under different placement pressures.</description><subject>automated fiber placement</subject><subject>Automation</subject><subject>Cantilever beams</subject><subject>Carbon fiber reinforced plastics</subject><subject>cohesive zone model</subject><subject>Composite materials</subject><subject>Crack tips</subject><subject>Curing</subject><subject>Deformation mechanisms</subject><subject>Delamination</subject><subject>double cantilever beam test</subject><subject>Ductile fracture</subject><subject>Fiber placement</subject><subject>Fiber reinforced polymers</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Heat treating</subject><subject>Impact resistance</subject><subject>Impact strength</subject><subject>Laminates</subject><subject>Mode‐I fracture toughness</subject><subject>Plastic deformation</subject><subject>Polyether ether ketones</subject><subject>Thermoplastic composites</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10c1KAzEQB_AgCtYq-AgBL162Jtlumj1K8aNQUVDPSzaZ2JTdzZpklT6Wb2i29eppDvOb_wwMQpeUzCgh7KZXM1aSghyhCS3mIiMFL4_RhLAFy0ReLk7RWQjbJCnn-QT9vMZB77Dr8JPTgFfYdhF8I1vbSY-NlyoOHnANG_llncfOYDlE18oIGhtbg8d9IxW00MU0i4ONA1auC66xWkabguMGfOuSCtGq1Gt7lxTsldXgbfcxmjRtmgE6BeMS75omZY86nTDG9B5CSLecoxMjmwAXf3WK3u_v3paP2fr5YbW8XWeKijnJCsWZyKmghgnOodS1EaKWc21MIRjUuVFCiUXOuSTcMK4lK6AWijIJpdJFPkVXh9zeu88BQqy2bvBdWlnltCipyAmlSV0flPIuBA-m6r1tpd9VlFTjQ6peVfuHJJod6LdtYPevq16WB_8L6d-RSA</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Liu, Chen</creator><creator>He, Chen</creator><creator>Zou, Zhongfeng</creator><creator>Li, Yong</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0009-0000-8884-3413</orcidid></search><sort><creationdate>20240912</creationdate><title>Study on Mode I interlaminar fracture behavior of automated fiber placement in situ consolidation thermoplastic composite considering the influence of roller compaction pressure</title><author>Liu, Chen ; He, Chen ; Zou, Zhongfeng ; Li, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1840-5c6283181f2866e9dbf88ba4dff582eb3fc8c87366a06f26da25eb8c12ae9cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automated fiber placement</topic><topic>Automation</topic><topic>Cantilever beams</topic><topic>Carbon fiber reinforced plastics</topic><topic>cohesive zone model</topic><topic>Composite materials</topic><topic>Crack tips</topic><topic>Curing</topic><topic>Deformation mechanisms</topic><topic>Delamination</topic><topic>double cantilever beam test</topic><topic>Ductile fracture</topic><topic>Fiber placement</topic><topic>Fiber reinforced polymers</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Heat treating</topic><topic>Impact resistance</topic><topic>Impact strength</topic><topic>Laminates</topic><topic>Mode‐I fracture toughness</topic><topic>Plastic deformation</topic><topic>Polyether ether ketones</topic><topic>Thermoplastic composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>He, Chen</creatorcontrib><creatorcontrib>Zou, Zhongfeng</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>He, Chen</au><au>Zou, Zhongfeng</au><au>Li, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Mode I interlaminar fracture behavior of automated fiber placement in situ consolidation thermoplastic composite considering the influence of roller compaction pressure</atitle><jtitle>Polymer composites</jtitle><date>2024-09-12</date><risdate>2024</risdate><volume>46</volume><issue>2</issue><spage>1454</spage><epage>1468</epage><pages>1454-1468</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>This study delved into the Mode I fracture behavior of laser‐assisted automated fiber placement (AFP) in situ consolidated thermoplastic composite laminates under different curing pressures. In compliance with ASTM D5528 standards, T700 carbon fiber reinforced polyether ether ketone (T700‐CF/PEEK) double cantilever beam (DCB) specimens were fabricated and segregated into three test groups subjected to distinct roller pressures: DCB‐100N, DCB‐500N, and DCB‐1500N. The fracture toughness of these specimens was then inversely characterized by employing an optimized ASTM‐based data reduction methodology. A kind of tri‐linear cohesive zone model (CZM) incorporating the fracture process zone (FPZ) length was developed to simulate delamination behavior, showing good agreement between experimental results and simulation predictions. Compared with the other two test groups, DCB‐1500N specimens have more inter‐laminar bridging fibers and higher propagated toughness. Although the length of fiber bridging area is shorter, the fiber bridging density is higher, so the influence of fiber bridging on toughness is more pronounced in the DCB‐1500N specimens. This study provides theoretical guidance for the impact resistance design of thermoplastic composites (TPCs), offering valuable insights into the intrinsic relationship between material processing and fracture damage mechanisms.
Highlights
Explore the characteristic interlaminar fracture behavior of thermoplastic laminates made by AFP under different curing pressures.
Develop a more accurate tri‐linear CZM model to describe the plastic deformation at crack tips and fiber bridging during the delamination process.
Unveil the intrinsic relationship between AFP curing pressure and ductile fracture mechanism of thermoplastic composites.
Characterization and analysis process of fracture toughness of in situ consolidation thermoplastic composite materials with automated fiber placement under different placement pressures.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.29050</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0000-8884-3413</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2024-09, Vol.46 (2), p.1454-1468 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pc_29050 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | automated fiber placement Automation Cantilever beams Carbon fiber reinforced plastics cohesive zone model Composite materials Crack tips Curing Deformation mechanisms Delamination double cantilever beam test Ductile fracture Fiber placement Fiber reinforced polymers Fracture mechanics Fracture toughness Heat treating Impact resistance Impact strength Laminates Mode‐I fracture toughness Plastic deformation Polyether ether ketones Thermoplastic composites |
title | Study on Mode I interlaminar fracture behavior of automated fiber placement in situ consolidation thermoplastic composite considering the influence of roller compaction pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Mode%20I%20interlaminar%20fracture%20behavior%20of%20automated%20fiber%20placement%20in%20situ%20consolidation%20thermoplastic%20composite%20considering%20the%20influence%20of%20roller%20compaction%20pressure&rft.jtitle=Polymer%20composites&rft.au=Liu,%20Chen&rft.date=2024-09-12&rft.volume=46&rft.issue=2&rft.spage=1454&rft.epage=1468&rft.pages=1454-1468&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.29050&rft_dat=%3Cproquest_cross%3E3159183011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159183011&rft_id=info:pmid/&rfr_iscdi=true |