Advances in nanomaterials as exceptional fillers to reinforce carbon fiber‐reinforced polymers composites and their emerging applications
Carbon fiber reinforced polymer (CFRP) composites exhibit excellent characteristics such as light weight, high specific strength, specific stiffness, and chemical stability, making them customizable to meet the specific demands of various sectors such as the automotive, aerospace, defense, biomedica...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2025-01, Vol.46 (1), p.54-80 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | Polymer composites |
container_volume | 46 |
creator | Luo, Yuxin Shi, Zhicheng Qiao, Sijie Tong, Aixin Liao, Xiaohong Zhang, Tongrui Bai, Jie Xu, Chao Xiong, Xiaoman Chen, Fengxiang Xu, Weilin |
description | Carbon fiber reinforced polymer (CFRP) composites exhibit excellent characteristics such as light weight, high specific strength, specific stiffness, and chemical stability, making them customizable to meet the specific demands of various sectors such as the automotive, aerospace, defense, biomedical, and energy industries. However, the inert surface of carbon fibers (CFs) results in a poor interface compatibility with polymer matrices, leading to numerous interfacial defects and pores in prepared CFRP composites. These drawbacks significantly limit the application of CFRP composites in high‐end fields. The higher surface area and smaller size of nanomaterials provide multiple advantages for high‐performance CFRP composites that enhance the mechanical properties, impact resistance and interface adhesion between the fiber and the matrix. Hence, this review firstly summarizes the interfacial behavior and interface enhancement mechanisms for CFRP composites. Subsequently, we comprehensively review the recent advances in various nanomaterials‐modified CFRP composites, including carbon‐based nanoparticles, silicon‐based nanomaterials and metal nanomaterials, et al. Besides, we also present the applications of CFRP in emerging fields, such as military, aerospace, automotive, sports equipment, and medical, etc. Finally, we also prospected the challenges and future development trends of CFRP composites, aiming to provide new ideas and insights for future research on nanomaterial modifications and promote the development of high‐performance CFRP composites.
Highlights
The interface reinforced theory of CFRP is comprehensively summarized.
Different types of nanoparticles that can be used for reinforcement in CFRP composites and nanomaterials modification methods are reviewed.
Application of CFRP composites in various fields is presented.
Challenges and future development directions of preparation of high‐performance CFRP composites are proposed.
Nanomaterials currently commonly used for interfacial modification of carbon fiber reinforced polymer composites. |
doi_str_mv | 10.1002/pc.29027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pc_29027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150967370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1847-97b44f6efa07a4ad0680751c578a9454d1b8542c9e5da5c515f65ba3cb494bbb3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpSDyCJRaWFDux42SsKv6kSjDAHF07TnGV2sZOgW7sLDwjT4JLERvTlXw--ehehE4pmVBC8guvJnlNcrGHRpSzKiO8rPfRKL3kWVXU4hAdxbhMkpZlMUIf0_YFrNIRG4stWLeCQQcDfcQQsX5T2g_GWehxZ_peh4gHh4M2tnNBaawgSGdTJnX4ev_8C1rsXb9Zbb1yK--iGVIF2BYPT9oErFO0MHaBwfveKNh2xGN00KViffI7x-jx6vJhdpPN765vZ9N5pmjFRFYLyVhX6g6IAAYtKSsiOFVcVFAzzloqK85yVWveAlec8q7kEgolWc2klMUYne3-9cE9r3UcmqVbh7RjbArKSV2KQpCkzndKBRdj0F3jg1lB2DSUNNtTN141P6dONNvRV9Przb-uuZ_t_DdI7IN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150967370</pqid></control><display><type>article</type><title>Advances in nanomaterials as exceptional fillers to reinforce carbon fiber‐reinforced polymers composites and their emerging applications</title><source>Wiley Online Library</source><creator>Luo, Yuxin ; Shi, Zhicheng ; Qiao, Sijie ; Tong, Aixin ; Liao, Xiaohong ; Zhang, Tongrui ; Bai, Jie ; Xu, Chao ; Xiong, Xiaoman ; Chen, Fengxiang ; Xu, Weilin</creator><creatorcontrib>Luo, Yuxin ; Shi, Zhicheng ; Qiao, Sijie ; Tong, Aixin ; Liao, Xiaohong ; Zhang, Tongrui ; Bai, Jie ; Xu, Chao ; Xiong, Xiaoman ; Chen, Fengxiang ; Xu, Weilin</creatorcontrib><description>Carbon fiber reinforced polymer (CFRP) composites exhibit excellent characteristics such as light weight, high specific strength, specific stiffness, and chemical stability, making them customizable to meet the specific demands of various sectors such as the automotive, aerospace, defense, biomedical, and energy industries. However, the inert surface of carbon fibers (CFs) results in a poor interface compatibility with polymer matrices, leading to numerous interfacial defects and pores in prepared CFRP composites. These drawbacks significantly limit the application of CFRP composites in high‐end fields. The higher surface area and smaller size of nanomaterials provide multiple advantages for high‐performance CFRP composites that enhance the mechanical properties, impact resistance and interface adhesion between the fiber and the matrix. Hence, this review firstly summarizes the interfacial behavior and interface enhancement mechanisms for CFRP composites. Subsequently, we comprehensively review the recent advances in various nanomaterials‐modified CFRP composites, including carbon‐based nanoparticles, silicon‐based nanomaterials and metal nanomaterials, et al. Besides, we also present the applications of CFRP in emerging fields, such as military, aerospace, automotive, sports equipment, and medical, etc. Finally, we also prospected the challenges and future development trends of CFRP composites, aiming to provide new ideas and insights for future research on nanomaterial modifications and promote the development of high‐performance CFRP composites.
Highlights
The interface reinforced theory of CFRP is comprehensively summarized.
Different types of nanoparticles that can be used for reinforcement in CFRP composites and nanomaterials modification methods are reviewed.
Application of CFRP composites in various fields is presented.
Challenges and future development directions of preparation of high‐performance CFRP composites are proposed.
Nanomaterials currently commonly used for interfacial modification of carbon fiber reinforced polymer composites.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.29027</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Carbon fiber reinforced plastics ; carbon fiber reinforced polymer composites ; Carbon fibers ; Defense industry ; Fiber composites ; Fiber reinforced polymers ; Impact resistance ; interface adhesion ; interface enhancement mechanisms ; Mechanical properties ; Medical equipment ; Military applications ; Nanomaterials ; Nanoparticles ; Polymer matrix composites ; Sporting goods</subject><ispartof>Polymer composites, 2025-01, Vol.46 (1), p.54-80</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2025 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1847-97b44f6efa07a4ad0680751c578a9454d1b8542c9e5da5c515f65ba3cb494bbb3</cites><orcidid>0000-0001-6481-1230 ; 0009-0004-3692-8799 ; 0000-0002-5791-6189 ; 0009-0006-3153-3282 ; 0009-0008-6984-8962 ; 0009-0000-9053-6922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.29027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.29027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Luo, Yuxin</creatorcontrib><creatorcontrib>Shi, Zhicheng</creatorcontrib><creatorcontrib>Qiao, Sijie</creatorcontrib><creatorcontrib>Tong, Aixin</creatorcontrib><creatorcontrib>Liao, Xiaohong</creatorcontrib><creatorcontrib>Zhang, Tongrui</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Xiong, Xiaoman</creatorcontrib><creatorcontrib>Chen, Fengxiang</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><title>Advances in nanomaterials as exceptional fillers to reinforce carbon fiber‐reinforced polymers composites and their emerging applications</title><title>Polymer composites</title><description>Carbon fiber reinforced polymer (CFRP) composites exhibit excellent characteristics such as light weight, high specific strength, specific stiffness, and chemical stability, making them customizable to meet the specific demands of various sectors such as the automotive, aerospace, defense, biomedical, and energy industries. However, the inert surface of carbon fibers (CFs) results in a poor interface compatibility with polymer matrices, leading to numerous interfacial defects and pores in prepared CFRP composites. These drawbacks significantly limit the application of CFRP composites in high‐end fields. The higher surface area and smaller size of nanomaterials provide multiple advantages for high‐performance CFRP composites that enhance the mechanical properties, impact resistance and interface adhesion between the fiber and the matrix. Hence, this review firstly summarizes the interfacial behavior and interface enhancement mechanisms for CFRP composites. Subsequently, we comprehensively review the recent advances in various nanomaterials‐modified CFRP composites, including carbon‐based nanoparticles, silicon‐based nanomaterials and metal nanomaterials, et al. Besides, we also present the applications of CFRP in emerging fields, such as military, aerospace, automotive, sports equipment, and medical, etc. Finally, we also prospected the challenges and future development trends of CFRP composites, aiming to provide new ideas and insights for future research on nanomaterial modifications and promote the development of high‐performance CFRP composites.
Highlights
The interface reinforced theory of CFRP is comprehensively summarized.
Different types of nanoparticles that can be used for reinforcement in CFRP composites and nanomaterials modification methods are reviewed.
Application of CFRP composites in various fields is presented.
Challenges and future development directions of preparation of high‐performance CFRP composites are proposed.
Nanomaterials currently commonly used for interfacial modification of carbon fiber reinforced polymer composites.</description><subject>Biocompatibility</subject><subject>Carbon fiber reinforced plastics</subject><subject>carbon fiber reinforced polymer composites</subject><subject>Carbon fibers</subject><subject>Defense industry</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Impact resistance</subject><subject>interface adhesion</subject><subject>interface enhancement mechanisms</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Military applications</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Polymer matrix composites</subject><subject>Sporting goods</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpSDyCJRaWFDux42SsKv6kSjDAHF07TnGV2sZOgW7sLDwjT4JLERvTlXw--ehehE4pmVBC8guvJnlNcrGHRpSzKiO8rPfRKL3kWVXU4hAdxbhMkpZlMUIf0_YFrNIRG4stWLeCQQcDfcQQsX5T2g_GWehxZ_peh4gHh4M2tnNBaawgSGdTJnX4ev_8C1rsXb9Zbb1yK--iGVIF2BYPT9oErFO0MHaBwfveKNh2xGN00KViffI7x-jx6vJhdpPN765vZ9N5pmjFRFYLyVhX6g6IAAYtKSsiOFVcVFAzzloqK85yVWveAlec8q7kEgolWc2klMUYne3-9cE9r3UcmqVbh7RjbArKSV2KQpCkzndKBRdj0F3jg1lB2DSUNNtTN141P6dONNvRV9Przb-uuZ_t_DdI7IN9</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Luo, Yuxin</creator><creator>Shi, Zhicheng</creator><creator>Qiao, Sijie</creator><creator>Tong, Aixin</creator><creator>Liao, Xiaohong</creator><creator>Zhang, Tongrui</creator><creator>Bai, Jie</creator><creator>Xu, Chao</creator><creator>Xiong, Xiaoman</creator><creator>Chen, Fengxiang</creator><creator>Xu, Weilin</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6481-1230</orcidid><orcidid>https://orcid.org/0009-0004-3692-8799</orcidid><orcidid>https://orcid.org/0000-0002-5791-6189</orcidid><orcidid>https://orcid.org/0009-0006-3153-3282</orcidid><orcidid>https://orcid.org/0009-0008-6984-8962</orcidid><orcidid>https://orcid.org/0009-0000-9053-6922</orcidid></search><sort><creationdate>20250110</creationdate><title>Advances in nanomaterials as exceptional fillers to reinforce carbon fiber‐reinforced polymers composites and their emerging applications</title><author>Luo, Yuxin ; Shi, Zhicheng ; Qiao, Sijie ; Tong, Aixin ; Liao, Xiaohong ; Zhang, Tongrui ; Bai, Jie ; Xu, Chao ; Xiong, Xiaoman ; Chen, Fengxiang ; Xu, Weilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1847-97b44f6efa07a4ad0680751c578a9454d1b8542c9e5da5c515f65ba3cb494bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biocompatibility</topic><topic>Carbon fiber reinforced plastics</topic><topic>carbon fiber reinforced polymer composites</topic><topic>Carbon fibers</topic><topic>Defense industry</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Impact resistance</topic><topic>interface adhesion</topic><topic>interface enhancement mechanisms</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Military applications</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Polymer matrix composites</topic><topic>Sporting goods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yuxin</creatorcontrib><creatorcontrib>Shi, Zhicheng</creatorcontrib><creatorcontrib>Qiao, Sijie</creatorcontrib><creatorcontrib>Tong, Aixin</creatorcontrib><creatorcontrib>Liao, Xiaohong</creatorcontrib><creatorcontrib>Zhang, Tongrui</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Xiong, Xiaoman</creatorcontrib><creatorcontrib>Chen, Fengxiang</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yuxin</au><au>Shi, Zhicheng</au><au>Qiao, Sijie</au><au>Tong, Aixin</au><au>Liao, Xiaohong</au><au>Zhang, Tongrui</au><au>Bai, Jie</au><au>Xu, Chao</au><au>Xiong, Xiaoman</au><au>Chen, Fengxiang</au><au>Xu, Weilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in nanomaterials as exceptional fillers to reinforce carbon fiber‐reinforced polymers composites and their emerging applications</atitle><jtitle>Polymer composites</jtitle><date>2025-01-10</date><risdate>2025</risdate><volume>46</volume><issue>1</issue><spage>54</spage><epage>80</epage><pages>54-80</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Carbon fiber reinforced polymer (CFRP) composites exhibit excellent characteristics such as light weight, high specific strength, specific stiffness, and chemical stability, making them customizable to meet the specific demands of various sectors such as the automotive, aerospace, defense, biomedical, and energy industries. However, the inert surface of carbon fibers (CFs) results in a poor interface compatibility with polymer matrices, leading to numerous interfacial defects and pores in prepared CFRP composites. These drawbacks significantly limit the application of CFRP composites in high‐end fields. The higher surface area and smaller size of nanomaterials provide multiple advantages for high‐performance CFRP composites that enhance the mechanical properties, impact resistance and interface adhesion between the fiber and the matrix. Hence, this review firstly summarizes the interfacial behavior and interface enhancement mechanisms for CFRP composites. Subsequently, we comprehensively review the recent advances in various nanomaterials‐modified CFRP composites, including carbon‐based nanoparticles, silicon‐based nanomaterials and metal nanomaterials, et al. Besides, we also present the applications of CFRP in emerging fields, such as military, aerospace, automotive, sports equipment, and medical, etc. Finally, we also prospected the challenges and future development trends of CFRP composites, aiming to provide new ideas and insights for future research on nanomaterial modifications and promote the development of high‐performance CFRP composites.
Highlights
The interface reinforced theory of CFRP is comprehensively summarized.
Different types of nanoparticles that can be used for reinforcement in CFRP composites and nanomaterials modification methods are reviewed.
Application of CFRP composites in various fields is presented.
Challenges and future development directions of preparation of high‐performance CFRP composites are proposed.
Nanomaterials currently commonly used for interfacial modification of carbon fiber reinforced polymer composites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.29027</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6481-1230</orcidid><orcidid>https://orcid.org/0009-0004-3692-8799</orcidid><orcidid>https://orcid.org/0000-0002-5791-6189</orcidid><orcidid>https://orcid.org/0009-0006-3153-3282</orcidid><orcidid>https://orcid.org/0009-0008-6984-8962</orcidid><orcidid>https://orcid.org/0009-0000-9053-6922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2025-01, Vol.46 (1), p.54-80 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pc_29027 |
source | Wiley Online Library |
subjects | Biocompatibility Carbon fiber reinforced plastics carbon fiber reinforced polymer composites Carbon fibers Defense industry Fiber composites Fiber reinforced polymers Impact resistance interface adhesion interface enhancement mechanisms Mechanical properties Medical equipment Military applications Nanomaterials Nanoparticles Polymer matrix composites Sporting goods |
title | Advances in nanomaterials as exceptional fillers to reinforce carbon fiber‐reinforced polymers composites and their emerging applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20nanomaterials%20as%20exceptional%20fillers%20to%20reinforce%20carbon%20fiber%E2%80%90reinforced%20polymers%20composites%20and%20their%20emerging%20applications&rft.jtitle=Polymer%20composites&rft.au=Luo,%20Yuxin&rft.date=2025-01-10&rft.volume=46&rft.issue=1&rft.spage=54&rft.epage=80&rft.pages=54-80&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.29027&rft_dat=%3Cproquest_cross%3E3150967370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150967370&rft_id=info:pmid/&rfr_iscdi=true |