Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs

Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibrobl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2011-04, Vol.223 (5), p.593-603
Hauptverfasser: Quattrocelli, Mattia, Palazzolo, Giacomo, Floris, Giuseppe, Schöffski, Patrick, Anastasia, Luigi, Orlacchio, Aldo, Vandendriessche, Thierry, Chuah, Marinee KL, Cossu, Giulio, Verfaillie, Catherine, Sampaolesi, Maurilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 5
container_start_page 593
container_title The Journal of pathology
container_volume 223
creator Quattrocelli, Mattia
Palazzolo, Giacomo
Floris, Giuseppe
Schöffski, Patrick
Anastasia, Luigi
Orlacchio, Aldo
Vandendriessche, Thierry
Chuah, Marinee KL
Cossu, Giulio
Verfaillie, Catherine
Sampaolesi, Maurilio
description Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.2845
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_path_2845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PATH2845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</originalsourceid><addsrcrecordid>eNp1kEtPwkAUhSdGI4gu_AOmGxcuCtN5tJ0lIQpEgiSSsJxMp3d0tA8yUx_995aAuHJ1H-e79yQHoesIDyOMyWirmtchSRk_Qf0IizgUqYhPUb_TSEhZlPTQhfdvGGMhOD9HPRJ1W5LwPlrOq8bZylsdaCiKoISydm3gwFamdhp8ULb1C1Q7vS5L25RQNUFtgi04q9sGwrxrPiEP7Op54i_RmVGFh6tDHaD1w_16MgsXT9P5ZLwINeMpD4FmSmdEM4ZpDFQYpk1OBKUsj7Ncp4QmhClOIBEJ7SZhstzwOI0zEeFc0QG627_VrvbegZFbZ0vlWhlhuYtE7iKRu0g69mbPbj-yEvIj-ZtBB9weAOW1KoxTlbb-j6OCJZRGHTfac1-2gPZ_R7kar2cH63B_YX0D38cL5d5lnNCEy81yKvHmkS8mi6nk9AemoYhG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Quattrocelli, Mattia ; Palazzolo, Giacomo ; Floris, Giuseppe ; Schöffski, Patrick ; Anastasia, Luigi ; Orlacchio, Aldo ; Vandendriessche, Thierry ; Chuah, Marinee KL ; Cossu, Giulio ; Verfaillie, Catherine ; Sampaolesi, Maurilio</creator><creatorcontrib>Quattrocelli, Mattia ; Palazzolo, Giacomo ; Floris, Giuseppe ; Schöffski, Patrick ; Anastasia, Luigi ; Orlacchio, Aldo ; Vandendriessche, Thierry ; Chuah, Marinee KL ; Cossu, Giulio ; Verfaillie, Catherine ; Sampaolesi, Maurilio</creatorcontrib><description>Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.2845</identifier><identifier>PMID: 21341275</identifier><identifier>CODEN: JPTLAS</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Animals, Newborn ; Biological and medical sciences ; CD56 ; CD56 Antigen - analysis ; Cell Differentiation ; Cell Proliferation ; Disease Models, Animal ; Diseases of striated muscles. Neuromuscular diseases ; DNA Transposable Elements ; Epigenesis, Genetic ; epigenetic memory ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - transplantation ; Investigative techniques, diagnostic techniques (general aspects) ; iPSCs ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle, Skeletal - physiology ; muscular dystrophy ; Muscular Dystrophy, Animal - metabolism ; Muscular Dystrophy, Animal - pathology ; Muscular Dystrophy, Animal - therapy ; Neurology ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; pericytes ; Pericytes - cytology ; Regeneration ; Sarcoglycans - deficiency ; Sarcoglycans - metabolism ; Transfection</subject><ispartof>The Journal of pathology, 2011-04, Vol.223 (5), p.593-603</ispartof><rights>Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</citedby><cites>FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.2845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.2845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23947331$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21341275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quattrocelli, Mattia</creatorcontrib><creatorcontrib>Palazzolo, Giacomo</creatorcontrib><creatorcontrib>Floris, Giuseppe</creatorcontrib><creatorcontrib>Schöffski, Patrick</creatorcontrib><creatorcontrib>Anastasia, Luigi</creatorcontrib><creatorcontrib>Orlacchio, Aldo</creatorcontrib><creatorcontrib>Vandendriessche, Thierry</creatorcontrib><creatorcontrib>Chuah, Marinee KL</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Verfaillie, Catherine</creatorcontrib><creatorcontrib>Sampaolesi, Maurilio</creatorcontrib><title>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>CD56</subject><subject>CD56 Antigen - analysis</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Disease Models, Animal</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>DNA Transposable Elements</subject><subject>Epigenesis, Genetic</subject><subject>epigenetic memory</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - transplantation</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>iPSCs</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Muscle, Skeletal - physiology</subject><subject>muscular dystrophy</subject><subject>Muscular Dystrophy, Animal - metabolism</subject><subject>Muscular Dystrophy, Animal - pathology</subject><subject>Muscular Dystrophy, Animal - therapy</subject><subject>Neurology</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>pericytes</subject><subject>Pericytes - cytology</subject><subject>Regeneration</subject><subject>Sarcoglycans - deficiency</subject><subject>Sarcoglycans - metabolism</subject><subject>Transfection</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwkAUhSdGI4gu_AOmGxcuCtN5tJ0lIQpEgiSSsJxMp3d0tA8yUx_995aAuHJ1H-e79yQHoesIDyOMyWirmtchSRk_Qf0IizgUqYhPUb_TSEhZlPTQhfdvGGMhOD9HPRJ1W5LwPlrOq8bZylsdaCiKoISydm3gwFamdhp8ULb1C1Q7vS5L25RQNUFtgi04q9sGwrxrPiEP7Op54i_RmVGFh6tDHaD1w_16MgsXT9P5ZLwINeMpD4FmSmdEM4ZpDFQYpk1OBKUsj7Ncp4QmhClOIBEJ7SZhstzwOI0zEeFc0QG627_VrvbegZFbZ0vlWhlhuYtE7iKRu0g69mbPbj-yEvIj-ZtBB9weAOW1KoxTlbb-j6OCJZRGHTfac1-2gPZ_R7kar2cH63B_YX0D38cL5d5lnNCEy81yKvHmkS8mi6nk9AemoYhG</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Quattrocelli, Mattia</creator><creator>Palazzolo, Giacomo</creator><creator>Floris, Giuseppe</creator><creator>Schöffski, Patrick</creator><creator>Anastasia, Luigi</creator><creator>Orlacchio, Aldo</creator><creator>Vandendriessche, Thierry</creator><creator>Chuah, Marinee KL</creator><creator>Cossu, Giulio</creator><creator>Verfaillie, Catherine</creator><creator>Sampaolesi, Maurilio</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201104</creationdate><title>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</title><author>Quattrocelli, Mattia ; Palazzolo, Giacomo ; Floris, Giuseppe ; Schöffski, Patrick ; Anastasia, Luigi ; Orlacchio, Aldo ; Vandendriessche, Thierry ; Chuah, Marinee KL ; Cossu, Giulio ; Verfaillie, Catherine ; Sampaolesi, Maurilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>CD56</topic><topic>CD56 Antigen - analysis</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Disease Models, Animal</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>DNA Transposable Elements</topic><topic>Epigenesis, Genetic</topic><topic>epigenetic memory</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - transplantation</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>iPSCs</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Muscle, Skeletal - physiology</topic><topic>muscular dystrophy</topic><topic>Muscular Dystrophy, Animal - metabolism</topic><topic>Muscular Dystrophy, Animal - pathology</topic><topic>Muscular Dystrophy, Animal - therapy</topic><topic>Neurology</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>pericytes</topic><topic>Pericytes - cytology</topic><topic>Regeneration</topic><topic>Sarcoglycans - deficiency</topic><topic>Sarcoglycans - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quattrocelli, Mattia</creatorcontrib><creatorcontrib>Palazzolo, Giacomo</creatorcontrib><creatorcontrib>Floris, Giuseppe</creatorcontrib><creatorcontrib>Schöffski, Patrick</creatorcontrib><creatorcontrib>Anastasia, Luigi</creatorcontrib><creatorcontrib>Orlacchio, Aldo</creatorcontrib><creatorcontrib>Vandendriessche, Thierry</creatorcontrib><creatorcontrib>Chuah, Marinee KL</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Verfaillie, Catherine</creatorcontrib><creatorcontrib>Sampaolesi, Maurilio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quattrocelli, Mattia</au><au>Palazzolo, Giacomo</au><au>Floris, Giuseppe</au><au>Schöffski, Patrick</au><au>Anastasia, Luigi</au><au>Orlacchio, Aldo</au><au>Vandendriessche, Thierry</au><au>Chuah, Marinee KL</au><au>Cossu, Giulio</au><au>Verfaillie, Catherine</au><au>Sampaolesi, Maurilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2011-04</date><risdate>2011</risdate><volume>223</volume><issue>5</issue><spage>593</spage><epage>603</epage><pages>593-603</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><coden>JPTLAS</coden><abstract>Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>21341275</pmid><doi>10.1002/path.2845</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2011-04, Vol.223 (5), p.593-603
issn 0022-3417
1096-9896
language eng
recordid cdi_crossref_primary_10_1002_path_2845
source Wiley-Blackwell Journals; MEDLINE
subjects Animals
Animals, Newborn
Biological and medical sciences
CD56
CD56 Antigen - analysis
Cell Differentiation
Cell Proliferation
Disease Models, Animal
Diseases of striated muscles. Neuromuscular diseases
DNA Transposable Elements
Epigenesis, Genetic
epigenetic memory
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - transplantation
Investigative techniques, diagnostic techniques (general aspects)
iPSCs
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Muscle, Skeletal - physiology
muscular dystrophy
Muscular Dystrophy, Animal - metabolism
Muscular Dystrophy, Animal - pathology
Muscular Dystrophy, Animal - therapy
Neurology
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
pericytes
Pericytes - cytology
Regeneration
Sarcoglycans - deficiency
Sarcoglycans - metabolism
Transfection
title Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20cell%20memory%20reinforces%20myogenic%20commitment%20of%20pericyte-derived%20iPSCs&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Quattrocelli,%20Mattia&rft.date=2011-04&rft.volume=223&rft.issue=5&rft.spage=593&rft.epage=603&rft.pages=593-603&rft.issn=0022-3417&rft.eissn=1096-9896&rft.coden=JPTLAS&rft_id=info:doi/10.1002/path.2845&rft_dat=%3Cwiley_cross%3EPATH2845%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21341275&rfr_iscdi=true