Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs
Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibrobl...
Gespeichert in:
Veröffentlicht in: | The Journal of pathology 2011-04, Vol.223 (5), p.593-603 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 5 |
container_start_page | 593 |
container_title | The Journal of pathology |
container_volume | 223 |
creator | Quattrocelli, Mattia Palazzolo, Giacomo Floris, Giuseppe Schöffski, Patrick Anastasia, Luigi Orlacchio, Aldo Vandendriessche, Thierry Chuah, Marinee KL Cossu, Giulio Verfaillie, Catherine Sampaolesi, Maurilio |
description | Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/path.2845 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_path_2845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PATH2845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</originalsourceid><addsrcrecordid>eNp1kEtPwkAUhSdGI4gu_AOmGxcuCtN5tJ0lIQpEgiSSsJxMp3d0tA8yUx_995aAuHJ1H-e79yQHoesIDyOMyWirmtchSRk_Qf0IizgUqYhPUb_TSEhZlPTQhfdvGGMhOD9HPRJ1W5LwPlrOq8bZylsdaCiKoISydm3gwFamdhp8ULb1C1Q7vS5L25RQNUFtgi04q9sGwrxrPiEP7Op54i_RmVGFh6tDHaD1w_16MgsXT9P5ZLwINeMpD4FmSmdEM4ZpDFQYpk1OBKUsj7Ncp4QmhClOIBEJ7SZhstzwOI0zEeFc0QG627_VrvbegZFbZ0vlWhlhuYtE7iKRu0g69mbPbj-yEvIj-ZtBB9weAOW1KoxTlbb-j6OCJZRGHTfac1-2gPZ_R7kar2cH63B_YX0D38cL5d5lnNCEy81yKvHmkS8mi6nk9AemoYhG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Quattrocelli, Mattia ; Palazzolo, Giacomo ; Floris, Giuseppe ; Schöffski, Patrick ; Anastasia, Luigi ; Orlacchio, Aldo ; Vandendriessche, Thierry ; Chuah, Marinee KL ; Cossu, Giulio ; Verfaillie, Catherine ; Sampaolesi, Maurilio</creator><creatorcontrib>Quattrocelli, Mattia ; Palazzolo, Giacomo ; Floris, Giuseppe ; Schöffski, Patrick ; Anastasia, Luigi ; Orlacchio, Aldo ; Vandendriessche, Thierry ; Chuah, Marinee KL ; Cossu, Giulio ; Verfaillie, Catherine ; Sampaolesi, Maurilio</creatorcontrib><description>Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.2845</identifier><identifier>PMID: 21341275</identifier><identifier>CODEN: JPTLAS</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Animals, Newborn ; Biological and medical sciences ; CD56 ; CD56 Antigen - analysis ; Cell Differentiation ; Cell Proliferation ; Disease Models, Animal ; Diseases of striated muscles. Neuromuscular diseases ; DNA Transposable Elements ; Epigenesis, Genetic ; epigenetic memory ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - transplantation ; Investigative techniques, diagnostic techniques (general aspects) ; iPSCs ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle, Skeletal - physiology ; muscular dystrophy ; Muscular Dystrophy, Animal - metabolism ; Muscular Dystrophy, Animal - pathology ; Muscular Dystrophy, Animal - therapy ; Neurology ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; pericytes ; Pericytes - cytology ; Regeneration ; Sarcoglycans - deficiency ; Sarcoglycans - metabolism ; Transfection</subject><ispartof>The Journal of pathology, 2011-04, Vol.223 (5), p.593-603</ispartof><rights>Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</citedby><cites>FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.2845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.2845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23947331$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21341275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quattrocelli, Mattia</creatorcontrib><creatorcontrib>Palazzolo, Giacomo</creatorcontrib><creatorcontrib>Floris, Giuseppe</creatorcontrib><creatorcontrib>Schöffski, Patrick</creatorcontrib><creatorcontrib>Anastasia, Luigi</creatorcontrib><creatorcontrib>Orlacchio, Aldo</creatorcontrib><creatorcontrib>Vandendriessche, Thierry</creatorcontrib><creatorcontrib>Chuah, Marinee KL</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Verfaillie, Catherine</creatorcontrib><creatorcontrib>Sampaolesi, Maurilio</creatorcontrib><title>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>CD56</subject><subject>CD56 Antigen - analysis</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Disease Models, Animal</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>DNA Transposable Elements</subject><subject>Epigenesis, Genetic</subject><subject>epigenetic memory</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - transplantation</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>iPSCs</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Muscle, Skeletal - physiology</subject><subject>muscular dystrophy</subject><subject>Muscular Dystrophy, Animal - metabolism</subject><subject>Muscular Dystrophy, Animal - pathology</subject><subject>Muscular Dystrophy, Animal - therapy</subject><subject>Neurology</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>pericytes</subject><subject>Pericytes - cytology</subject><subject>Regeneration</subject><subject>Sarcoglycans - deficiency</subject><subject>Sarcoglycans - metabolism</subject><subject>Transfection</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwkAUhSdGI4gu_AOmGxcuCtN5tJ0lIQpEgiSSsJxMp3d0tA8yUx_995aAuHJ1H-e79yQHoesIDyOMyWirmtchSRk_Qf0IizgUqYhPUb_TSEhZlPTQhfdvGGMhOD9HPRJ1W5LwPlrOq8bZylsdaCiKoISydm3gwFamdhp8ULb1C1Q7vS5L25RQNUFtgi04q9sGwrxrPiEP7Op54i_RmVGFh6tDHaD1w_16MgsXT9P5ZLwINeMpD4FmSmdEM4ZpDFQYpk1OBKUsj7Ncp4QmhClOIBEJ7SZhstzwOI0zEeFc0QG627_VrvbegZFbZ0vlWhlhuYtE7iKRu0g69mbPbj-yEvIj-ZtBB9weAOW1KoxTlbb-j6OCJZRGHTfac1-2gPZ_R7kar2cH63B_YX0D38cL5d5lnNCEy81yKvHmkS8mi6nk9AemoYhG</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Quattrocelli, Mattia</creator><creator>Palazzolo, Giacomo</creator><creator>Floris, Giuseppe</creator><creator>Schöffski, Patrick</creator><creator>Anastasia, Luigi</creator><creator>Orlacchio, Aldo</creator><creator>Vandendriessche, Thierry</creator><creator>Chuah, Marinee KL</creator><creator>Cossu, Giulio</creator><creator>Verfaillie, Catherine</creator><creator>Sampaolesi, Maurilio</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201104</creationdate><title>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</title><author>Quattrocelli, Mattia ; Palazzolo, Giacomo ; Floris, Giuseppe ; Schöffski, Patrick ; Anastasia, Luigi ; Orlacchio, Aldo ; Vandendriessche, Thierry ; Chuah, Marinee KL ; Cossu, Giulio ; Verfaillie, Catherine ; Sampaolesi, Maurilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4585-e3bacb2c44036e39f4cfd29334d6bdc823724a52e79738239fbdf5686b910da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>CD56</topic><topic>CD56 Antigen - analysis</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Disease Models, Animal</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>DNA Transposable Elements</topic><topic>Epigenesis, Genetic</topic><topic>epigenetic memory</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - transplantation</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>iPSCs</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Muscle, Skeletal - physiology</topic><topic>muscular dystrophy</topic><topic>Muscular Dystrophy, Animal - metabolism</topic><topic>Muscular Dystrophy, Animal - pathology</topic><topic>Muscular Dystrophy, Animal - therapy</topic><topic>Neurology</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>pericytes</topic><topic>Pericytes - cytology</topic><topic>Regeneration</topic><topic>Sarcoglycans - deficiency</topic><topic>Sarcoglycans - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quattrocelli, Mattia</creatorcontrib><creatorcontrib>Palazzolo, Giacomo</creatorcontrib><creatorcontrib>Floris, Giuseppe</creatorcontrib><creatorcontrib>Schöffski, Patrick</creatorcontrib><creatorcontrib>Anastasia, Luigi</creatorcontrib><creatorcontrib>Orlacchio, Aldo</creatorcontrib><creatorcontrib>Vandendriessche, Thierry</creatorcontrib><creatorcontrib>Chuah, Marinee KL</creatorcontrib><creatorcontrib>Cossu, Giulio</creatorcontrib><creatorcontrib>Verfaillie, Catherine</creatorcontrib><creatorcontrib>Sampaolesi, Maurilio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quattrocelli, Mattia</au><au>Palazzolo, Giacomo</au><au>Floris, Giuseppe</au><au>Schöffski, Patrick</au><au>Anastasia, Luigi</au><au>Orlacchio, Aldo</au><au>Vandendriessche, Thierry</au><au>Chuah, Marinee KL</au><au>Cossu, Giulio</au><au>Verfaillie, Catherine</au><au>Sampaolesi, Maurilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2011-04</date><risdate>2011</risdate><volume>223</volume><issue>5</issue><spage>593</spage><epage>603</epage><pages>593-603</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><coden>JPTLAS</coden><abstract>Mesoangioblasts (MABs) are a subset of muscle‐derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25–30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C‐2.6 antigen. Furthermore, chimeric mice from mdx‐iPSCs (DYS‐HAC) cells showed tissue‐specific expression of dystrophin. Nevertheless, myogenic differentiation protocols and the potential of iPSCs generated from different cell sources still present unanswered questions. Here we show that iPSCs generated from prospectively sorted MABs (MAB‐iPSCs) are pluripotent as fibroblast‐derived iPSCs (f‐iPSCs). However, both teratoma formation and genetic cell manipulation assays identify a durable epigenetic memory in MAB‐iPSCs, resulting in stronger myogenic commitment. Striated muscle tissue accounts for up to 70% of MAB‐iPSC teratomas. Moreover, transfection with Pax3 and Pax7 induces a more robust myogenic differentiation in MAB‐iPSCs than in f‐iPSCs. A larger amount of CD56+ progenitors can be sorted from the MAB‐iPSCs differentiating pool and, after transplantation into αsg‐KO mice, can efficiently participate to skeletal muscle regeneration and restore αsg expression. Our data strongly suggest that iPSCs are a heterogeneous population and, when generated from myogenic adult stem cells, they exhibit a stronger commitment, paving the way for creating custom‐made cell protocols for muscular dystrophies. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>21341275</pmid><doi>10.1002/path.2845</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3417 |
ispartof | The Journal of pathology, 2011-04, Vol.223 (5), p.593-603 |
issn | 0022-3417 1096-9896 |
language | eng |
recordid | cdi_crossref_primary_10_1002_path_2845 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Animals Animals, Newborn Biological and medical sciences CD56 CD56 Antigen - analysis Cell Differentiation Cell Proliferation Disease Models, Animal Diseases of striated muscles. Neuromuscular diseases DNA Transposable Elements Epigenesis, Genetic epigenetic memory Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - transplantation Investigative techniques, diagnostic techniques (general aspects) iPSCs Medical sciences Mice Mice, Inbred C57BL Mice, Knockout Muscle, Skeletal - physiology muscular dystrophy Muscular Dystrophy, Animal - metabolism Muscular Dystrophy, Animal - pathology Muscular Dystrophy, Animal - therapy Neurology Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques pericytes Pericytes - cytology Regeneration Sarcoglycans - deficiency Sarcoglycans - metabolism Transfection |
title | Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20cell%20memory%20reinforces%20myogenic%20commitment%20of%20pericyte-derived%20iPSCs&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Quattrocelli,%20Mattia&rft.date=2011-04&rft.volume=223&rft.issue=5&rft.spage=593&rft.epage=603&rft.pages=593-603&rft.issn=0022-3417&rft.eissn=1096-9896&rft.coden=JPTLAS&rft_id=info:doi/10.1002/path.2845&rft_dat=%3Cwiley_cross%3EPATH2845%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21341275&rfr_iscdi=true |