Evaluation of the elastic field in phase‐field crystal simulations

The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2023-11, Vol.23 (3), p.n/a
Hauptverfasser: Punke, Maik, Skogvoll, Vidar, Salvalaglio, Marco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Proceedings in applied mathematics and mechanics
container_volume 23
creator Punke, Maik
Skogvoll, Vidar
Salvalaglio, Marco
description The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.
doi_str_mv 10.1002/pamm.202300213
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202300213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202300213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1293-946efbb42f1c6911117efe4325144fd9a9c5bd1d59b3bf1c8f62cd6c1a45d2673</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMvsFEnxsx8FjVcpFagUDzJbj2KqR00RxCsrGI_CMPAkJQcDGWc5F33eGH6FzICkQQi8aXVUpJZQNC7ADNAMBeZITAYd_5mN0EuPziAhGZuhq9aLDXne-3uHa4W5rsQ06dt5g520osd_hZquj_Xh7nw6m7WOnA46-2ocvMZ6iI6dDtGfffY6erlePy9tkfX9zt1ysEwNUskRyYV1RcOrACAlD5dZZzmgGnLtSammyooQykwUrBubSCWpKYUDzrKQiZ3OUTn9NW8fYWqea1le67RUQNWagxgzUTwaDICfh1Qfb_0Orh8Vm8-t-AtOdYiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of the elastic field in phase‐field crystal simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Punke, Maik ; Skogvoll, Vidar ; Salvalaglio, Marco</creator><creatorcontrib>Punke, Maik ; Skogvoll, Vidar ; Salvalaglio, Marco</creatorcontrib><description>The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202300213</identifier><language>eng</language><ispartof>Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a</ispartof><rights>2023 The Authors. &amp; Mechanics published by Wiley‐VCH GmbH.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1293-946efbb42f1c6911117efe4325144fd9a9c5bd1d59b3bf1c8f62cd6c1a45d2673</cites><orcidid>0000-0002-3564-7942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.202300213$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.202300213$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Punke, Maik</creatorcontrib><creatorcontrib>Skogvoll, Vidar</creatorcontrib><creatorcontrib>Salvalaglio, Marco</creatorcontrib><title>Evaluation of the elastic field in phase‐field crystal simulations</title><title>Proceedings in applied mathematics and mechanics</title><description>The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhi0EEqWwMvsFEnxsx8FjVcpFagUDzJbj2KqR00RxCsrGI_CMPAkJQcDGWc5F33eGH6FzICkQQi8aXVUpJZQNC7ADNAMBeZITAYd_5mN0EuPziAhGZuhq9aLDXne-3uHa4W5rsQ06dt5g520osd_hZquj_Xh7nw6m7WOnA46-2ocvMZ6iI6dDtGfffY6erlePy9tkfX9zt1ysEwNUskRyYV1RcOrACAlD5dZZzmgGnLtSammyooQykwUrBubSCWpKYUDzrKQiZ3OUTn9NW8fYWqea1le67RUQNWagxgzUTwaDICfh1Qfb_0Orh8Vm8-t-AtOdYiM</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Punke, Maik</creator><creator>Skogvoll, Vidar</creator><creator>Salvalaglio, Marco</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3564-7942</orcidid></search><sort><creationdate>202311</creationdate><title>Evaluation of the elastic field in phase‐field crystal simulations</title><author>Punke, Maik ; Skogvoll, Vidar ; Salvalaglio, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1293-946efbb42f1c6911117efe4325144fd9a9c5bd1d59b3bf1c8f62cd6c1a45d2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Punke, Maik</creatorcontrib><creatorcontrib>Skogvoll, Vidar</creatorcontrib><creatorcontrib>Salvalaglio, Marco</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Punke, Maik</au><au>Skogvoll, Vidar</au><au>Salvalaglio, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the elastic field in phase‐field crystal simulations</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.</abstract><doi>10.1002/pamm.202300213</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3564-7942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_202300213
source Wiley Online Library Journals Frontfile Complete
title Evaluation of the elastic field in phase‐field crystal simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20elastic%20field%20in%20phase%E2%80%90field%20crystal%20simulations&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Punke,%20Maik&rft.date=2023-11&rft.volume=23&rft.issue=3&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202300213&rft_dat=%3Cwiley_cross%3EPAMM202300213%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true