Evaluation of the elastic field in phase‐field crystal simulations
The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2023-11, Vol.23 (3), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 23 |
creator | Punke, Maik Skogvoll, Vidar Salvalaglio, Marco |
description | The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations. |
doi_str_mv | 10.1002/pamm.202300213 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202300213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202300213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1293-946efbb42f1c6911117efe4325144fd9a9c5bd1d59b3bf1c8f62cd6c1a45d2673</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMvsFEnxsx8FjVcpFagUDzJbj2KqR00RxCsrGI_CMPAkJQcDGWc5F33eGH6FzICkQQi8aXVUpJZQNC7ADNAMBeZITAYd_5mN0EuPziAhGZuhq9aLDXne-3uHa4W5rsQ06dt5g520osd_hZquj_Xh7nw6m7WOnA46-2ocvMZ6iI6dDtGfffY6erlePy9tkfX9zt1ysEwNUskRyYV1RcOrACAlD5dZZzmgGnLtSammyooQykwUrBubSCWpKYUDzrKQiZ3OUTn9NW8fYWqea1le67RUQNWagxgzUTwaDICfh1Qfb_0Orh8Vm8-t-AtOdYiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of the elastic field in phase‐field crystal simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Punke, Maik ; Skogvoll, Vidar ; Salvalaglio, Marco</creator><creatorcontrib>Punke, Maik ; Skogvoll, Vidar ; Salvalaglio, Marco</creatorcontrib><description>The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202300213</identifier><language>eng</language><ispartof>Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a</ispartof><rights>2023 The Authors. & Mechanics published by Wiley‐VCH GmbH.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1293-946efbb42f1c6911117efe4325144fd9a9c5bd1d59b3bf1c8f62cd6c1a45d2673</cites><orcidid>0000-0002-3564-7942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.202300213$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.202300213$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Punke, Maik</creatorcontrib><creatorcontrib>Skogvoll, Vidar</creatorcontrib><creatorcontrib>Salvalaglio, Marco</creatorcontrib><title>Evaluation of the elastic field in phase‐field crystal simulations</title><title>Proceedings in applied mathematics and mechanics</title><description>The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhi0EEqWwMvsFEnxsx8FjVcpFagUDzJbj2KqR00RxCsrGI_CMPAkJQcDGWc5F33eGH6FzICkQQi8aXVUpJZQNC7ADNAMBeZITAYd_5mN0EuPziAhGZuhq9aLDXne-3uHa4W5rsQ06dt5g520osd_hZquj_Xh7nw6m7WOnA46-2ocvMZ6iI6dDtGfffY6erlePy9tkfX9zt1ysEwNUskRyYV1RcOrACAlD5dZZzmgGnLtSammyooQykwUrBubSCWpKYUDzrKQiZ3OUTn9NW8fYWqea1le67RUQNWagxgzUTwaDICfh1Qfb_0Orh8Vm8-t-AtOdYiM</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Punke, Maik</creator><creator>Skogvoll, Vidar</creator><creator>Salvalaglio, Marco</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3564-7942</orcidid></search><sort><creationdate>202311</creationdate><title>Evaluation of the elastic field in phase‐field crystal simulations</title><author>Punke, Maik ; Skogvoll, Vidar ; Salvalaglio, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1293-946efbb42f1c6911117efe4325144fd9a9c5bd1d59b3bf1c8f62cd6c1a45d2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Punke, Maik</creatorcontrib><creatorcontrib>Skogvoll, Vidar</creatorcontrib><creatorcontrib>Salvalaglio, Marco</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Punke, Maik</au><au>Skogvoll, Vidar</au><au>Salvalaglio, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the elastic field in phase‐field crystal simulations</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2023-11</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>The phase‐field crystal model (PFC) describes crystal structures at diffusive timescales through a periodic order parameter representing the atomic density. One of its main features is that it naturally incorporates elastic and plastic deformation. To correctly interpret numerical simulation results or devise extensions related to the elasticity description, it is important to have direct access to the elastic field. In this work, we discuss its evaluation in classical PFC models based on the Swift–Hohenberg energy functional. We consider approaches where the stress field can be derived from the microscopic density field (i.e., the order parameter) and a simple novel numerical routine is proposed. By numerical simulations, we demonstrate that it overcomes some limitations of currently used methods. Moreover, we shed light on the elasticity description conveyed by classical PFC models, characterizing a residual stress effect present at equilibrium. We show explicitly and discuss the evaluation of the elastic fields in prototypical representative cases involving an elastic inclusion, a grain boundary, and dislocations.</abstract><doi>10.1002/pamm.202300213</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3564-7942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2023-11, Vol.23 (3), p.n/a |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_202300213 |
source | Wiley Online Library Journals Frontfile Complete |
title | Evaluation of the elastic field in phase‐field crystal simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20elastic%20field%20in%20phase%E2%80%90field%20crystal%20simulations&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Punke,%20Maik&rft.date=2023-11&rft.volume=23&rft.issue=3&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202300213&rft_dat=%3Cwiley_cross%3EPAMM202300213%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |