Incorporation of thermal effects into the energy‐momentum consistent elastic model for fiber‐bending stiffness in composites

Owing to the wide acceptance of fiber reinforced composites in the lightweight structure industry, the need to study its thermo‐elastic behavior in dynamical multi‐body systems still remains an open question. Standard continuum models, by virtue of first‐order gradient of deformation, cannot capture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2023-03, Vol.22 (1), p.n/a
Hauptverfasser: Dietzsch, Julian, Kalaimani, Iniyan, Gross, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Proceedings in applied mathematics and mechanics
container_volume 22
creator Dietzsch, Julian
Kalaimani, Iniyan
Gross, Michael
description Owing to the wide acceptance of fiber reinforced composites in the lightweight structure industry, the need to study its thermo‐elastic behavior in dynamical multi‐body systems still remains an open question. Standard continuum models, by virtue of first‐order gradient of deformation, cannot capture curvature effects and hence appropriate extensions of the standard modeling techniques are indispensable to model the accurate physical stiffness. The fiber‐bending curvature are captured by introducing a higher‐order gradient of the deformation as an independent field in the standard continuum. This work explores in detail, a further extension of this continuum to understand the thermal effects on the bending stiffness of fiber bundle in fiber‐reinforced composites. Our proposed model incorporates the temperature of the composite and its bidirectional dependency with the higher‐order gradients of the deformation into the extended mechanical continuum model. The implementation of the model is pursued in the context of multi‐field mixed finite element method and dynamic variational principle. The principle of virtual power enables our extended non‐isothermal continuum to derive an energy‐momentum scheme of higher order. The resulting time‐integrator exhibits physically consistent locking‐ free numerical behavior in dynamical simulations. Our novel approach is illustrated by simple transient dynamic simulations with a hyperelastic, transversely isotropic, polyconvex material behavior. We investigate the conservation of total energy and total momentum in the framework of thermo‐elasticity and study the spatial and temporal convergence for long‐term dynamic simulations with coarser grids and increased accurate numerical solutions.
doi_str_mv 10.1002/pamm.202200261
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202200261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202200261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1291-ea220ec12da9af7f772e8c3cc361d8eccee4e33204e63bcfb3a81c312de747233</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMKVs38gxY8oTo9VxaNSKzjAOXKcdTGK7cg2Qr31E_hGvgRHrYAbp53ZnRlpB6FrSmaUEHYzSGtnjDCWSUVP0IRWVBSCVPT0Dz5HFzG-ZQmtOJmg_copHwYfZDLeYa9xeoVgZY9Ba1ApYuOSH5cYHITt7mv_ab0Fl94tVt5FE1MmGHoZk1HY-g56rH3A2rQQsroF1xm3xfmstYM4JmanHXw0CeIlOtOyj3B1nFP0cnf7vHwo1o_3q-ViXSjK5rQAmf-CjDs5l1poIRjUiivFK9rVoBRACZwzUkLFW6VbLmuqeNaDKAXjfIpmh1wVfIwBdDMEY2XYNZQ0Y3_N2F_z0182zA-GD9PD7h9187TYbH6938Lgey0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporation of thermal effects into the energy‐momentum consistent elastic model for fiber‐bending stiffness in composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dietzsch, Julian ; Kalaimani, Iniyan ; Gross, Michael</creator><creatorcontrib>Dietzsch, Julian ; Kalaimani, Iniyan ; Gross, Michael</creatorcontrib><description>Owing to the wide acceptance of fiber reinforced composites in the lightweight structure industry, the need to study its thermo‐elastic behavior in dynamical multi‐body systems still remains an open question. Standard continuum models, by virtue of first‐order gradient of deformation, cannot capture curvature effects and hence appropriate extensions of the standard modeling techniques are indispensable to model the accurate physical stiffness. The fiber‐bending curvature are captured by introducing a higher‐order gradient of the deformation as an independent field in the standard continuum. This work explores in detail, a further extension of this continuum to understand the thermal effects on the bending stiffness of fiber bundle in fiber‐reinforced composites. Our proposed model incorporates the temperature of the composite and its bidirectional dependency with the higher‐order gradients of the deformation into the extended mechanical continuum model. The implementation of the model is pursued in the context of multi‐field mixed finite element method and dynamic variational principle. The principle of virtual power enables our extended non‐isothermal continuum to derive an energy‐momentum scheme of higher order. The resulting time‐integrator exhibits physically consistent locking‐ free numerical behavior in dynamical simulations. Our novel approach is illustrated by simple transient dynamic simulations with a hyperelastic, transversely isotropic, polyconvex material behavior. We investigate the conservation of total energy and total momentum in the framework of thermo‐elasticity and study the spatial and temporal convergence for long‐term dynamic simulations with coarser grids and increased accurate numerical solutions.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202200261</identifier><language>eng</language><publisher>Berlin: Wiley-VCH GmbH</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2023-03, Vol.22 (1), p.n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1291-ea220ec12da9af7f772e8c3cc361d8eccee4e33204e63bcfb3a81c312de747233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.202200261$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.202200261$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dietzsch, Julian</creatorcontrib><creatorcontrib>Kalaimani, Iniyan</creatorcontrib><creatorcontrib>Gross, Michael</creatorcontrib><title>Incorporation of thermal effects into the energy‐momentum consistent elastic model for fiber‐bending stiffness in composites</title><title>Proceedings in applied mathematics and mechanics</title><description>Owing to the wide acceptance of fiber reinforced composites in the lightweight structure industry, the need to study its thermo‐elastic behavior in dynamical multi‐body systems still remains an open question. Standard continuum models, by virtue of first‐order gradient of deformation, cannot capture curvature effects and hence appropriate extensions of the standard modeling techniques are indispensable to model the accurate physical stiffness. The fiber‐bending curvature are captured by introducing a higher‐order gradient of the deformation as an independent field in the standard continuum. This work explores in detail, a further extension of this continuum to understand the thermal effects on the bending stiffness of fiber bundle in fiber‐reinforced composites. Our proposed model incorporates the temperature of the composite and its bidirectional dependency with the higher‐order gradients of the deformation into the extended mechanical continuum model. The implementation of the model is pursued in the context of multi‐field mixed finite element method and dynamic variational principle. The principle of virtual power enables our extended non‐isothermal continuum to derive an energy‐momentum scheme of higher order. The resulting time‐integrator exhibits physically consistent locking‐ free numerical behavior in dynamical simulations. Our novel approach is illustrated by simple transient dynamic simulations with a hyperelastic, transversely isotropic, polyconvex material behavior. We investigate the conservation of total energy and total momentum in the framework of thermo‐elasticity and study the spatial and temporal convergence for long‐term dynamic simulations with coarser grids and increased accurate numerical solutions.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUMtOwzAQtBBIlMKVs38gxY8oTo9VxaNSKzjAOXKcdTGK7cg2Qr31E_hGvgRHrYAbp53ZnRlpB6FrSmaUEHYzSGtnjDCWSUVP0IRWVBSCVPT0Dz5HFzG-ZQmtOJmg_copHwYfZDLeYa9xeoVgZY9Ba1ApYuOSH5cYHITt7mv_ab0Fl94tVt5FE1MmGHoZk1HY-g56rH3A2rQQsroF1xm3xfmstYM4JmanHXw0CeIlOtOyj3B1nFP0cnf7vHwo1o_3q-ViXSjK5rQAmf-CjDs5l1poIRjUiivFK9rVoBRACZwzUkLFW6VbLmuqeNaDKAXjfIpmh1wVfIwBdDMEY2XYNZQ0Y3_N2F_z0182zA-GD9PD7h9187TYbH6938Lgey0</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Dietzsch, Julian</creator><creator>Kalaimani, Iniyan</creator><creator>Gross, Michael</creator><general>Wiley-VCH GmbH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202303</creationdate><title>Incorporation of thermal effects into the energy‐momentum consistent elastic model for fiber‐bending stiffness in composites</title><author>Dietzsch, Julian ; Kalaimani, Iniyan ; Gross, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1291-ea220ec12da9af7f772e8c3cc361d8eccee4e33204e63bcfb3a81c312de747233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dietzsch, Julian</creatorcontrib><creatorcontrib>Kalaimani, Iniyan</creatorcontrib><creatorcontrib>Gross, Michael</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietzsch, Julian</au><au>Kalaimani, Iniyan</au><au>Gross, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of thermal effects into the energy‐momentum consistent elastic model for fiber‐bending stiffness in composites</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2023-03</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>Owing to the wide acceptance of fiber reinforced composites in the lightweight structure industry, the need to study its thermo‐elastic behavior in dynamical multi‐body systems still remains an open question. Standard continuum models, by virtue of first‐order gradient of deformation, cannot capture curvature effects and hence appropriate extensions of the standard modeling techniques are indispensable to model the accurate physical stiffness. The fiber‐bending curvature are captured by introducing a higher‐order gradient of the deformation as an independent field in the standard continuum. This work explores in detail, a further extension of this continuum to understand the thermal effects on the bending stiffness of fiber bundle in fiber‐reinforced composites. Our proposed model incorporates the temperature of the composite and its bidirectional dependency with the higher‐order gradients of the deformation into the extended mechanical continuum model. The implementation of the model is pursued in the context of multi‐field mixed finite element method and dynamic variational principle. The principle of virtual power enables our extended non‐isothermal continuum to derive an energy‐momentum scheme of higher order. The resulting time‐integrator exhibits physically consistent locking‐ free numerical behavior in dynamical simulations. Our novel approach is illustrated by simple transient dynamic simulations with a hyperelastic, transversely isotropic, polyconvex material behavior. We investigate the conservation of total energy and total momentum in the framework of thermo‐elasticity and study the spatial and temporal convergence for long‐term dynamic simulations with coarser grids and increased accurate numerical solutions.</abstract><cop>Berlin</cop><pub>Wiley-VCH GmbH</pub><doi>10.1002/pamm.202200261</doi><tpages>0</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2023-03, Vol.22 (1), p.n/a
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_202200261
source Wiley Online Library Journals Frontfile Complete
title Incorporation of thermal effects into the energy‐momentum consistent elastic model for fiber‐bending stiffness in composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20thermal%20effects%20into%20the%20energy%E2%80%90momentum%20consistent%20elastic%20model%20for%20fiber%E2%80%90bending%20stiffness%20in%20composites&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Dietzsch,%20Julian&rft.date=2023-03&rft.volume=22&rft.issue=1&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202200261&rft_dat=%3Cwiley_cross%3EPAMM202200261%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true