A mixed least‐squares finite element formulation within the framework of the theory of porous media

In the present contribution a mixed least‐squares finite element method (LSFEM) based on the Theory of Porous Media (TPM) is presented. In detail, we investigate an incompressible binary model consisting of the phases solid and liquid. The main idea is based on the modeling of saturated porous struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2019-11, Vol.19 (1), p.n/a
Hauptverfasser: Schwarz, Alexander, Averweg, Solveigh, Bluhm, Joachim, Schröder, Jörg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Proceedings in applied mathematics and mechanics
container_volume 19
creator Schwarz, Alexander
Averweg, Solveigh
Bluhm, Joachim
Schröder, Jörg
description In the present contribution a mixed least‐squares finite element method (LSFEM) based on the Theory of Porous Media (TPM) is presented. In detail, we investigate an incompressible binary model consisting of the phases solid and liquid. The main idea is based on the modeling of saturated porous structures. The resulting finite element is a four‐field formulation in terms of solid displacements, liquid pressure, mixture stresses and a new variable related to the pressure gradient. The conforming discretization of the unknowns in the spaces H(div) and H1 is realized by vector‐valued Raviart‐Thomas and standard Lagrange functions. Finally, a numerical example for liquid saturated porous structures considering an incompressible, linear elastic material behavior at small deformations, demonstrates the applicability of the LSFEM approach to the TPM.
doi_str_mv 10.1002/pamm.201900357
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201900357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201900357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1347-71f6880c592000d1e0b25f2264b13b25dd37e64455f8f83f92b90c03337ade673</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZe0LJIztxEmWVcWf1AoWsI7cZKwa4rjYiUp3HIEzchISioAdi9G8Gb03Gn2EnDOIGQC_2ChrYw6sABBpdkAmTLIsykCywz_6mJyE8DT4mRQwITij1rxiTRtUoft4ew8vvfIYqDat6ZBigxbbjmrnbd-ozriWbk23Ni3t1ki1Vxa3zj9Tp78WQzm_G6eN864P1GJt1Ck50qoJePbdp-Tx6vJhfhMt7q5v57NFVDGRDP8xLfMcqrTgAFAzhBVPNecyWTExyLoWGcokSVOd61zogq8KqEAIkakaZSamJN7frbwLwaMuN95Y5Xclg3KEVI6Qyh9IQ6DYB7amwd0_7vJ-tlz-Zj8BiwdtiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mixed least‐squares finite element formulation within the framework of the theory of porous media</title><source>Wiley Online Library Journals</source><creator>Schwarz, Alexander ; Averweg, Solveigh ; Bluhm, Joachim ; Schröder, Jörg</creator><creatorcontrib>Schwarz, Alexander ; Averweg, Solveigh ; Bluhm, Joachim ; Schröder, Jörg</creatorcontrib><description>In the present contribution a mixed least‐squares finite element method (LSFEM) based on the Theory of Porous Media (TPM) is presented. In detail, we investigate an incompressible binary model consisting of the phases solid and liquid. The main idea is based on the modeling of saturated porous structures. The resulting finite element is a four‐field formulation in terms of solid displacements, liquid pressure, mixture stresses and a new variable related to the pressure gradient. The conforming discretization of the unknowns in the spaces H(div) and H1 is realized by vector‐valued Raviart‐Thomas and standard Lagrange functions. Finally, a numerical example for liquid saturated porous structures considering an incompressible, linear elastic material behavior at small deformations, demonstrates the applicability of the LSFEM approach to the TPM.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201900357</identifier><language>eng</language><publisher>Berlin: WILEY‐VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2019-11, Vol.19 (1), p.n/a</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1347-71f6880c592000d1e0b25f2264b13b25dd37e64455f8f83f92b90c03337ade673</citedby><cites>FETCH-LOGICAL-c1347-71f6880c592000d1e0b25f2264b13b25dd37e64455f8f83f92b90c03337ade673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201900357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201900357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schwarz, Alexander</creatorcontrib><creatorcontrib>Averweg, Solveigh</creatorcontrib><creatorcontrib>Bluhm, Joachim</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><title>A mixed least‐squares finite element formulation within the framework of the theory of porous media</title><title>Proceedings in applied mathematics and mechanics</title><description>In the present contribution a mixed least‐squares finite element method (LSFEM) based on the Theory of Porous Media (TPM) is presented. In detail, we investigate an incompressible binary model consisting of the phases solid and liquid. The main idea is based on the modeling of saturated porous structures. The resulting finite element is a four‐field formulation in terms of solid displacements, liquid pressure, mixture stresses and a new variable related to the pressure gradient. The conforming discretization of the unknowns in the spaces H(div) and H1 is realized by vector‐valued Raviart‐Thomas and standard Lagrange functions. Finally, a numerical example for liquid saturated porous structures considering an incompressible, linear elastic material behavior at small deformations, demonstrates the applicability of the LSFEM approach to the TPM.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZe0LJIztxEmWVcWf1AoWsI7cZKwa4rjYiUp3HIEzchISioAdi9G8Gb03Gn2EnDOIGQC_2ChrYw6sABBpdkAmTLIsykCywz_6mJyE8DT4mRQwITij1rxiTRtUoft4ew8vvfIYqDat6ZBigxbbjmrnbd-ozriWbk23Ni3t1ki1Vxa3zj9Tp78WQzm_G6eN864P1GJt1Ck50qoJePbdp-Tx6vJhfhMt7q5v57NFVDGRDP8xLfMcqrTgAFAzhBVPNecyWTExyLoWGcokSVOd61zogq8KqEAIkakaZSamJN7frbwLwaMuN95Y5Xclg3KEVI6Qyh9IQ6DYB7amwd0_7vJ-tlz-Zj8BiwdtiA</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Schwarz, Alexander</creator><creator>Averweg, Solveigh</creator><creator>Bluhm, Joachim</creator><creator>Schröder, Jörg</creator><general>WILEY‐VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201911</creationdate><title>A mixed least‐squares finite element formulation within the framework of the theory of porous media</title><author>Schwarz, Alexander ; Averweg, Solveigh ; Bluhm, Joachim ; Schröder, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1347-71f6880c592000d1e0b25f2264b13b25dd37e64455f8f83f92b90c03337ade673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Schwarz, Alexander</creatorcontrib><creatorcontrib>Averweg, Solveigh</creatorcontrib><creatorcontrib>Bluhm, Joachim</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarz, Alexander</au><au>Averweg, Solveigh</au><au>Bluhm, Joachim</au><au>Schröder, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mixed least‐squares finite element formulation within the framework of the theory of porous media</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2019-11</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In the present contribution a mixed least‐squares finite element method (LSFEM) based on the Theory of Porous Media (TPM) is presented. In detail, we investigate an incompressible binary model consisting of the phases solid and liquid. The main idea is based on the modeling of saturated porous structures. The resulting finite element is a four‐field formulation in terms of solid displacements, liquid pressure, mixture stresses and a new variable related to the pressure gradient. The conforming discretization of the unknowns in the spaces H(div) and H1 is realized by vector‐valued Raviart‐Thomas and standard Lagrange functions. Finally, a numerical example for liquid saturated porous structures considering an incompressible, linear elastic material behavior at small deformations, demonstrates the applicability of the LSFEM approach to the TPM.</abstract><cop>Berlin</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/pamm.201900357</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2019-11, Vol.19 (1), p.n/a
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_201900357
source Wiley Online Library Journals
title A mixed least‐squares finite element formulation within the framework of the theory of porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mixed%20least%E2%80%90squares%20finite%20element%20formulation%20within%20the%20framework%20of%20the%20theory%20of%20porous%20media&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Schwarz,%20Alexander&rft.date=2019-11&rft.volume=19&rft.issue=1&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201900357&rft_dat=%3Cwiley_cross%3EPAMM201900357%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true