A Numerical RANS‐Based Model of a Nanosecond Pulsed Plasma Actuator for Flow Control over an Airfoil

Airfoil stall influences the performance of flight vehicles and remains a challenge for the design of modern aircraft. A Dielectric Barrier Discharge (DBD) device seems to be a promising tool to control the flow over various parts of an aircraft and to suppress separation. A phenomenological model b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2019-11, Vol.19 (1), p.n/a
Hauptverfasser: Aslani, Roozbeh, Krieger, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Airfoil stall influences the performance of flight vehicles and remains a challenge for the design of modern aircraft. A Dielectric Barrier Discharge (DBD) device seems to be a promising tool to control the flow over various parts of an aircraft and to suppress separation. A phenomenological model based on dynamic similarity is developed to simulate the control effect of a Nanosecond Dielectric Barrier Discharge (NS‐DBD) actuator. A two‐dimensional numerical simulation considers the response of the flow past a NACA 0015 airfoil at 14° post stall angle of attack and a Reynolds number of 250,000 to pulsed surface heating at the leading edge. The RANS‐based numerical results have been obtained for a baseline simulation (no actuation) and an open‐loop control simulation of the airfoil. A one‐equation local correlation‐based transition model is implemented to capture laminar‐turbulent transition. The numerical results of both the baseline and the actuated case are in good agreement with experiments performed by other authors.
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.201900332