Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities

Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2018-12, Vol.18 (1), p.n/a
Hauptverfasser: Weidauer, Tim, Willner, Kai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Proceedings in applied mathematics and mechanics
container_volume 18
creator Weidauer, Tim
Willner, Kai
description Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.
doi_str_mv 10.1002/pamm.201800216
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201800216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201800216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c896-146c4dd8c0b4cfd1f7a8abcda74f5433620dea70b1201b103f6335af1549ace83</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZe0LpHhq10mWUVV-pFSw6I6F5fgHjJK4slNV2XEEzshJSFME7FjNG-m90bwPoWsgMyBkfrOVTTObE8iGBfgJmgCHNEkJh9M_-hxdxPg2WiiZoOe116bGweid6pxvsbf4pQ8-Kr91Csc-dqaJ2LW4KFfY-tDsajka9657xbLVo_C7Dre-_Xz_qF1rZHCdM_ESnVlZR3P1Padoc7vaLO-T8vHuYVmUicpyngDjimmdKVIxZTXYVGayUlqmzC4YpXxOtJEpqWDoVgGhllO6kBYWLJfKZHSKZsezang7BmPFNrhGhl4AEQcy4kBG_JAZAvkxsHe16f9xi6divf7NfgHWXWsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weidauer, Tim ; Willner, Kai</creator><creatorcontrib>Weidauer, Tim ; Willner, Kai</creatorcontrib><description>Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201800216</identifier><language>eng</language><publisher>Berlin: WILEY‐VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2018-12, Vol.18 (1), p.n/a</ispartof><rights>Copyright © 2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c896-146c4dd8c0b4cfd1f7a8abcda74f5433620dea70b1201b103f6335af1549ace83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201800216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201800216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Weidauer, Tim</creatorcontrib><creatorcontrib>Willner, Kai</creatorcontrib><title>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</title><title>Proceedings in applied mathematics and mechanics</title><description>Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZe0LpHhq10mWUVV-pFSw6I6F5fgHjJK4slNV2XEEzshJSFME7FjNG-m90bwPoWsgMyBkfrOVTTObE8iGBfgJmgCHNEkJh9M_-hxdxPg2WiiZoOe116bGweid6pxvsbf4pQ8-Kr91Csc-dqaJ2LW4KFfY-tDsajka9657xbLVo_C7Dre-_Xz_qF1rZHCdM_ESnVlZR3P1Padoc7vaLO-T8vHuYVmUicpyngDjimmdKVIxZTXYVGayUlqmzC4YpXxOtJEpqWDoVgGhllO6kBYWLJfKZHSKZsezang7BmPFNrhGhl4AEQcy4kBG_JAZAvkxsHe16f9xi6divf7NfgHWXWsI</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Weidauer, Tim</creator><creator>Willner, Kai</creator><general>WILEY‐VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201812</creationdate><title>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</title><author>Weidauer, Tim ; Willner, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c896-146c4dd8c0b4cfd1f7a8abcda74f5433620dea70b1201b103f6335af1549ace83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Weidauer, Tim</creatorcontrib><creatorcontrib>Willner, Kai</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidauer, Tim</au><au>Willner, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2018-12</date><risdate>2018</risdate><volume>18</volume><issue>1</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.</abstract><cop>Berlin</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/pamm.201800216</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2018-12, Vol.18 (1), p.n/a
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_201800216
source Wiley Online Library Journals Frontfile Complete
title Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reduction%20of%20gyroscopic%20systems%20in%20ALE%20formulation%20with%20and%20without%20non%E2%80%90linearities&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Weidauer,%20Tim&rft.date=2018-12&rft.volume=18&rft.issue=1&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201800216&rft_dat=%3Cwiley_cross%3EPAMM201800216%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true