Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities
Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the re...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2018-12, Vol.18 (1), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 18 |
creator | Weidauer, Tim Willner, Kai |
description | Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method. |
doi_str_mv | 10.1002/pamm.201800216 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201800216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201800216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c896-146c4dd8c0b4cfd1f7a8abcda74f5433620dea70b1201b103f6335af1549ace83</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqWwZe0LpHhq10mWUVV-pFSw6I6F5fgHjJK4slNV2XEEzshJSFME7FjNG-m90bwPoWsgMyBkfrOVTTObE8iGBfgJmgCHNEkJh9M_-hxdxPg2WiiZoOe116bGweid6pxvsbf4pQ8-Kr91Csc-dqaJ2LW4KFfY-tDsajka9657xbLVo_C7Dre-_Xz_qF1rZHCdM_ESnVlZR3P1Padoc7vaLO-T8vHuYVmUicpyngDjimmdKVIxZTXYVGayUlqmzC4YpXxOtJEpqWDoVgGhllO6kBYWLJfKZHSKZsezang7BmPFNrhGhl4AEQcy4kBG_JAZAvkxsHe16f9xi6divf7NfgHWXWsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weidauer, Tim ; Willner, Kai</creator><creatorcontrib>Weidauer, Tim ; Willner, Kai</creatorcontrib><description>Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201800216</identifier><language>eng</language><publisher>Berlin: WILEY‐VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2018-12, Vol.18 (1), p.n/a</ispartof><rights>Copyright © 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c896-146c4dd8c0b4cfd1f7a8abcda74f5433620dea70b1201b103f6335af1549ace83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201800216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201800216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Weidauer, Tim</creatorcontrib><creatorcontrib>Willner, Kai</creatorcontrib><title>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</title><title>Proceedings in applied mathematics and mechanics</title><description>Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqWwZe0LpHhq10mWUVV-pFSw6I6F5fgHjJK4slNV2XEEzshJSFME7FjNG-m90bwPoWsgMyBkfrOVTTObE8iGBfgJmgCHNEkJh9M_-hxdxPg2WiiZoOe116bGweid6pxvsbf4pQ8-Kr91Csc-dqaJ2LW4KFfY-tDsajka9657xbLVo_C7Dre-_Xz_qF1rZHCdM_ESnVlZR3P1Padoc7vaLO-T8vHuYVmUicpyngDjimmdKVIxZTXYVGayUlqmzC4YpXxOtJEpqWDoVgGhllO6kBYWLJfKZHSKZsezang7BmPFNrhGhl4AEQcy4kBG_JAZAvkxsHe16f9xi6divf7NfgHWXWsI</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Weidauer, Tim</creator><creator>Willner, Kai</creator><general>WILEY‐VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201812</creationdate><title>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</title><author>Weidauer, Tim ; Willner, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c896-146c4dd8c0b4cfd1f7a8abcda74f5433620dea70b1201b103f6335af1549ace83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Weidauer, Tim</creatorcontrib><creatorcontrib>Willner, Kai</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weidauer, Tim</au><au>Willner, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2018-12</date><risdate>2018</risdate><volume>18</volume><issue>1</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>Rotating systems are subject to gyroscopic influences which alter their dynamic behaviour. The Arbitrary Lagrangian Eulerian (ALE) formulation is a popular approach for related models, e.g. for the simulation of tire rolling contact. It allows for decoupling the rotational guiding motion from the relative deformation of the rotating structure. At the same time it complicates contact computations as the relative displacement between two material particles is not tracked naturally by the ALE observer. Model reduction techniques for (non‐linear) systems face additional challenges in this context, of which a variety is discussed here for common approaches such as the Second order modal truncation, the Krylov subspace method or the Craig‐Bampton method.</abstract><cop>Berlin</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/pamm.201800216</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2018-12, Vol.18 (1), p.n/a |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_201800216 |
source | Wiley Online Library Journals Frontfile Complete |
title | Model reduction of gyroscopic systems in ALE formulation with and without non‐linearities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20reduction%20of%20gyroscopic%20systems%20in%20ALE%20formulation%20with%20and%20without%20non%E2%80%90linearities&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Weidauer,%20Tim&rft.date=2018-12&rft.volume=18&rft.issue=1&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201800216&rft_dat=%3Cwiley_cross%3EPAMM201800216%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |