Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells

Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2017-12, Vol.17 (1), p.271-272
Hauptverfasser: Schmerbauch, Mario, Erler, Felix, Matzenmiller, Anton, Levi‐Sasson, Aviad, Haj‐Ali, Rami, Aboudi, Jacob
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue 1
container_start_page 271
container_title Proceedings in applied mathematics and mechanics
container_volume 17
creator Schmerbauch, Mario
Erler, Felix
Matzenmiller, Anton
Levi‐Sasson, Aviad
Haj‐Ali, Rami
Aboudi, Jacob
description Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pamm.201710105
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201710105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201710105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1295-cf41b403553ea7c82daba191fea5d03ab293a3de662df36584ad638b4518b6bd3</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFavnvcPpO5kk01yLNGq0GARxWOY7E6alaRbdgPivzelot48vTm878F8jF2DWIAQ8c0eh2ERC8hAgEhP2AwUZFEmFJz-uc_ZRQjvUx-UFDO2raz2biDd4c5q7PktDrglXjlDvd1tuWv52k25sg15_kx21zqvyfDSDXsX7EiBv9mx42NHfIMeBxq91byisXPmgJfU9-GSnbXYB7r6zjl7Xd29lA_R-un-sVyuIw1xkUa6TaBJhExTSZjpPDbYIBTQEqZGSGziQqI0pFRsWqnSPEGjZN4kKeSNaoycs8Vxd_oqBE9tvfd2QP9Zg6gPmuqDpvpH0wQUR-DD9vT5T7veLKvql_0C8a9tUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</title><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Schmerbauch, Mario ; Erler, Felix ; Matzenmiller, Anton ; Levi‐Sasson, Aviad ; Haj‐Ali, Rami ; Aboudi, Jacob</creator><creatorcontrib>Schmerbauch, Mario ; Erler, Felix ; Matzenmiller, Anton ; Levi‐Sasson, Aviad ; Haj‐Ali, Rami ; Aboudi, Jacob</creatorcontrib><description>Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201710105</identifier><language>eng</language><publisher>Berlin: WILEY‐VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2017-12, Vol.17 (1), p.271-272</ispartof><rights>Copyright © 2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1295-cf41b403553ea7c82daba191fea5d03ab293a3de662df36584ad638b4518b6bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201710105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201710105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schmerbauch, Mario</creatorcontrib><creatorcontrib>Erler, Felix</creatorcontrib><creatorcontrib>Matzenmiller, Anton</creatorcontrib><creatorcontrib>Levi‐Sasson, Aviad</creatorcontrib><creatorcontrib>Haj‐Ali, Rami</creatorcontrib><creatorcontrib>Aboudi, Jacob</creatorcontrib><title>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</title><title>Proceedings in applied mathematics and mechanics</title><description>Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFavnvcPpO5kk01yLNGq0GARxWOY7E6alaRbdgPivzelot48vTm878F8jF2DWIAQ8c0eh2ERC8hAgEhP2AwUZFEmFJz-uc_ZRQjvUx-UFDO2raz2biDd4c5q7PktDrglXjlDvd1tuWv52k25sg15_kx21zqvyfDSDXsX7EiBv9mx42NHfIMeBxq91byisXPmgJfU9-GSnbXYB7r6zjl7Xd29lA_R-un-sVyuIw1xkUa6TaBJhExTSZjpPDbYIBTQEqZGSGziQqI0pFRsWqnSPEGjZN4kKeSNaoycs8Vxd_oqBE9tvfd2QP9Zg6gPmuqDpvpH0wQUR-DD9vT5T7veLKvql_0C8a9tUw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Schmerbauch, Mario</creator><creator>Erler, Felix</creator><creator>Matzenmiller, Anton</creator><creator>Levi‐Sasson, Aviad</creator><creator>Haj‐Ali, Rami</creator><creator>Aboudi, Jacob</creator><general>WILEY‐VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</title><author>Schmerbauch, Mario ; Erler, Felix ; Matzenmiller, Anton ; Levi‐Sasson, Aviad ; Haj‐Ali, Rami ; Aboudi, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1295-cf41b403553ea7c82daba191fea5d03ab293a3de662df36584ad638b4518b6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Schmerbauch, Mario</creatorcontrib><creatorcontrib>Erler, Felix</creatorcontrib><creatorcontrib>Matzenmiller, Anton</creatorcontrib><creatorcontrib>Levi‐Sasson, Aviad</creatorcontrib><creatorcontrib>Haj‐Ali, Rami</creatorcontrib><creatorcontrib>Aboudi, Jacob</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmerbauch, Mario</au><au>Erler, Felix</au><au>Matzenmiller, Anton</au><au>Levi‐Sasson, Aviad</au><au>Haj‐Ali, Rami</au><au>Aboudi, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>17</volume><issue>1</issue><spage>271</spage><epage>272</epage><pages>271-272</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/pamm.201710105</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2017-12, Vol.17 (1), p.271-272
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_201710105
source Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
title Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20Damage%20Modeling%20of%20Long%20Fiber%20Reinforced%20Composites%20With%20the%20Parametric%20Method%20of%20Cells&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Schmerbauch,%20Mario&rft.date=2017-12&rft.volume=17&rft.issue=1&rft.spage=271&rft.epage=272&rft.pages=271-272&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201710105&rft_dat=%3Cwiley_cross%3EPAMM201710105%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true