Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells
Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mec...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2017-12, Vol.17 (1), p.271-272 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 1 |
container_start_page | 271 |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 17 |
creator | Schmerbauch, Mario Erler, Felix Matzenmiller, Anton Levi‐Sasson, Aviad Haj‐Ali, Rami Aboudi, Jacob |
description | Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pamm.201710105 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201710105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201710105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1295-cf41b403553ea7c82daba191fea5d03ab293a3de662df36584ad638b4518b6bd3</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFavnvcPpO5kk01yLNGq0GARxWOY7E6alaRbdgPivzelot48vTm878F8jF2DWIAQ8c0eh2ERC8hAgEhP2AwUZFEmFJz-uc_ZRQjvUx-UFDO2raz2biDd4c5q7PktDrglXjlDvd1tuWv52k25sg15_kx21zqvyfDSDXsX7EiBv9mx42NHfIMeBxq91byisXPmgJfU9-GSnbXYB7r6zjl7Xd29lA_R-un-sVyuIw1xkUa6TaBJhExTSZjpPDbYIBTQEqZGSGziQqI0pFRsWqnSPEGjZN4kKeSNaoycs8Vxd_oqBE9tvfd2QP9Zg6gPmuqDpvpH0wQUR-DD9vT5T7veLKvql_0C8a9tUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</title><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Schmerbauch, Mario ; Erler, Felix ; Matzenmiller, Anton ; Levi‐Sasson, Aviad ; Haj‐Ali, Rami ; Aboudi, Jacob</creator><creatorcontrib>Schmerbauch, Mario ; Erler, Felix ; Matzenmiller, Anton ; Levi‐Sasson, Aviad ; Haj‐Ali, Rami ; Aboudi, Jacob</creatorcontrib><description>Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201710105</identifier><language>eng</language><publisher>Berlin: WILEY‐VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2017-12, Vol.17 (1), p.271-272</ispartof><rights>Copyright © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1295-cf41b403553ea7c82daba191fea5d03ab293a3de662df36584ad638b4518b6bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201710105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201710105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schmerbauch, Mario</creatorcontrib><creatorcontrib>Erler, Felix</creatorcontrib><creatorcontrib>Matzenmiller, Anton</creatorcontrib><creatorcontrib>Levi‐Sasson, Aviad</creatorcontrib><creatorcontrib>Haj‐Ali, Rami</creatorcontrib><creatorcontrib>Aboudi, Jacob</creatorcontrib><title>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</title><title>Proceedings in applied mathematics and mechanics</title><description>Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFavnvcPpO5kk01yLNGq0GARxWOY7E6alaRbdgPivzelot48vTm878F8jF2DWIAQ8c0eh2ERC8hAgEhP2AwUZFEmFJz-uc_ZRQjvUx-UFDO2raz2biDd4c5q7PktDrglXjlDvd1tuWv52k25sg15_kx21zqvyfDSDXsX7EiBv9mx42NHfIMeBxq91byisXPmgJfU9-GSnbXYB7r6zjl7Xd29lA_R-un-sVyuIw1xkUa6TaBJhExTSZjpPDbYIBTQEqZGSGziQqI0pFRsWqnSPEGjZN4kKeSNaoycs8Vxd_oqBE9tvfd2QP9Zg6gPmuqDpvpH0wQUR-DD9vT5T7veLKvql_0C8a9tUw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Schmerbauch, Mario</creator><creator>Erler, Felix</creator><creator>Matzenmiller, Anton</creator><creator>Levi‐Sasson, Aviad</creator><creator>Haj‐Ali, Rami</creator><creator>Aboudi, Jacob</creator><general>WILEY‐VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</title><author>Schmerbauch, Mario ; Erler, Felix ; Matzenmiller, Anton ; Levi‐Sasson, Aviad ; Haj‐Ali, Rami ; Aboudi, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1295-cf41b403553ea7c82daba191fea5d03ab293a3de662df36584ad638b4518b6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Schmerbauch, Mario</creatorcontrib><creatorcontrib>Erler, Felix</creatorcontrib><creatorcontrib>Matzenmiller, Anton</creatorcontrib><creatorcontrib>Levi‐Sasson, Aviad</creatorcontrib><creatorcontrib>Haj‐Ali, Rami</creatorcontrib><creatorcontrib>Aboudi, Jacob</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmerbauch, Mario</au><au>Erler, Felix</au><au>Matzenmiller, Anton</au><au>Levi‐Sasson, Aviad</au><au>Haj‐Ali, Rami</au><au>Aboudi, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2017-12</date><risdate>2017</risdate><volume>17</volume><issue>1</issue><spage>271</spage><epage>272</epage><pages>271-272</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>Micromechanical damage modeling is presented with the parametric high‐fidelity generalized method of cells for a long fiber reinforced composite. Two models for a planar single fiber repeating unit cell, including damage, are proposed. The first one, implemented with the spatial continuum damage mechanics, is based on the idea that volumetric defects occur in the material phases. The other one, modeled with the interface damage mechanics, is founded on the view that cracks as surface‐like de‐ fects cause the stress degradation. The potential and ability of both approaches to predict damage in first‐order homogenization is shown by comparing the simulation results with each other as well as with test data under uniaxial and biaxial stress loading. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/pamm.201710105</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2017-12, Vol.17 (1), p.271-272 |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_201710105 |
source | Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals |
title | Micromechanical Damage Modeling of Long Fiber Reinforced Composites With the Parametric Method of Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20Damage%20Modeling%20of%20Long%20Fiber%20Reinforced%20Composites%20With%20the%20Parametric%20Method%20of%20Cells&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Schmerbauch,%20Mario&rft.date=2017-12&rft.volume=17&rft.issue=1&rft.spage=271&rft.epage=272&rft.pages=271-272&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201710105&rft_dat=%3Cwiley_cross%3EPAMM201710105%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |