Comparison of a mixed least-squares formulation using different approximation spaces
The main goal of the present work is the comparison of the performance of a least‐squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the mini...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2015-10, Vol.15 (1), p.233-234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 1 |
container_start_page | 233 |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 15 |
creator | Steeger, Karl Schröder, Jörg Schwarz, Alexander |
description | The main goal of the present work is the comparison of the performance of a least‐squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least‐squares functional, compare e.g. [1]. As suitable functions for
$H^1(\cal{B})$
standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space
$H({\rm div}, \cal{B})$
vector‐valued Raviart‐Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two‐dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pamm.201510107 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201510107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_6W7VM1L1_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1677-e6f0accf4ca887c016d1e996b53153a68eb01deefffb6d95e9dc7c40f4b5b8b93</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEmNw5ZwX6IjXNWmP0wQDtAGHwY5Rmjoo0K4l7sT29nQqQrtx8i_5-yzrZ-waxAiEGN80pqpGYwEJCBDqhA1AgoqUkHB6lM_ZBdFHx4OMxYCtZnXVmOCp3vDaccMrv8OCl2iojehrawISd3WotqVpfQdtyW_eeeGdw4CblpumCfXOV_2WGmORLtmZMyXh1e8cste729XsPlo8zx9m00VkQSoVoXTCWOsm1qSpsgJkAZhlMk9iSGIjU8wFFIjOuVwWWYJZYZWdCDfJkzzNs3jIRv1dG2qigE43ofsk7DUIfehEHzrRf510QtYL377E_T-0fpkul8du1LueWtz9uSZ8aqlilej101zLtXpbwgL0Y_wD8gx4BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of a mixed least-squares formulation using different approximation spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Steeger, Karl ; Schröder, Jörg ; Schwarz, Alexander</creator><creatorcontrib>Steeger, Karl ; Schröder, Jörg ; Schwarz, Alexander</creatorcontrib><description>The main goal of the present work is the comparison of the performance of a least‐squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least‐squares functional, compare e.g. [1]. As suitable functions for
$H^1(\cal{B})$
standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space
$H({\rm div}, \cal{B})$
vector‐valued Raviart‐Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two‐dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201510107</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2015-10, Vol.15 (1), p.233-234</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1677-e6f0accf4ca887c016d1e996b53153a68eb01deefffb6d95e9dc7c40f4b5b8b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201510107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201510107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Steeger, Karl</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><creatorcontrib>Schwarz, Alexander</creatorcontrib><title>Comparison of a mixed least-squares formulation using different approximation spaces</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>The main goal of the present work is the comparison of the performance of a least‐squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least‐squares functional, compare e.g. [1]. As suitable functions for
$H^1(\cal{B})$
standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space
$H({\rm div}, \cal{B})$
vector‐valued Raviart‐Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two‐dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhiMEEmNw5ZwX6IjXNWmP0wQDtAGHwY5Rmjoo0K4l7sT29nQqQrtx8i_5-yzrZ-waxAiEGN80pqpGYwEJCBDqhA1AgoqUkHB6lM_ZBdFHx4OMxYCtZnXVmOCp3vDaccMrv8OCl2iojehrawISd3WotqVpfQdtyW_eeeGdw4CblpumCfXOV_2WGmORLtmZMyXh1e8cste729XsPlo8zx9m00VkQSoVoXTCWOsm1qSpsgJkAZhlMk9iSGIjU8wFFIjOuVwWWYJZYZWdCDfJkzzNs3jIRv1dG2qigE43ofsk7DUIfehEHzrRf510QtYL377E_T-0fpkul8du1LueWtz9uSZ8aqlilej101zLtXpbwgL0Y_wD8gx4BQ</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Steeger, Karl</creator><creator>Schröder, Jörg</creator><creator>Schwarz, Alexander</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201510</creationdate><title>Comparison of a mixed least-squares formulation using different approximation spaces</title><author>Steeger, Karl ; Schröder, Jörg ; Schwarz, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1677-e6f0accf4ca887c016d1e996b53153a68eb01deefffb6d95e9dc7c40f4b5b8b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Steeger, Karl</creatorcontrib><creatorcontrib>Schröder, Jörg</creatorcontrib><creatorcontrib>Schwarz, Alexander</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steeger, Karl</au><au>Schröder, Jörg</au><au>Schwarz, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of a mixed least-squares formulation using different approximation spaces</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2015-10</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>233</spage><epage>234</epage><pages>233-234</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>The main goal of the present work is the comparison of the performance of a least‐squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least‐squares functional, compare e.g. [1]. As suitable functions for
$H^1(\cal{B})$
standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space
$H({\rm div}, \cal{B})$
vector‐valued Raviart‐Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two‐dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.201510107</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2015-10, Vol.15 (1), p.233-234 |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_201510107 |
source | Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
title | Comparison of a mixed least-squares formulation using different approximation spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20a%20mixed%20least-squares%20formulation%20using%20different%20approximation%20spaces&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Steeger,%20Karl&rft.date=2015-10&rft.volume=15&rft.issue=1&rft.spage=233&rft.epage=234&rft.pages=233-234&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201510107&rft_dat=%3Cistex_cross%3Eark_67375_WNG_6W7VM1L1_J%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |