Instability maps of a system of Mathieu-Equations using different perturbation methods

It is well known, that the Mathieu‐equation possesses several instability regions. Dealing with systems of Mathieu‐ equations results in an increase of the number and size of the instability regions. The so called combination frequencies, an addition of the natural frequencies of the time invariant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2011-12, Vol.11 (1), p.319-320
Hauptverfasser: Hubinger, Stefan, Gattringer, Hubert, Bremer, Hartmut, Mayrhofer, Karl
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 1
container_start_page 319
container_title Proceedings in applied mathematics and mechanics
container_volume 11
creator Hubinger, Stefan
Gattringer, Hubert
Bremer, Hartmut
Mayrhofer, Karl
description It is well known, that the Mathieu‐equation possesses several instability regions. Dealing with systems of Mathieu‐ equations results in an increase of the number and size of the instability regions. The so called combination frequencies, an addition of the natural frequencies of the time invariant system, appear. Applying the Floquet theory and numerical integration yields a grid of stable and unstable areas. Even if this procedure delivers good results it is not suitable for a fast calculation, because it is very CPU‐ time consuming. Therefore several Perturbation methods are compared in this paper. The first one is the Lindstedt‐ Poincaré method, delivering some of the instability areas. The second one is the Multiple‐ Scales‐ method used with an approximation up to second order. Assuming the periodicity of the equations solution, with parameters on the boundary curve, facilitates the mathematical description of the borderline. An example is carried out; the analytical stability boundaries are validated by the Floquet theory. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pamm.201110151
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201110151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_QNV67LGV_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1721-fe9e38e49bda42af75bf4d0c78324695ab39fd724febcc5e9e0cc50baa7826e63</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMvsPpPjFid2MVVVKpbaABGW07MSmhuYD2xHk35NShLox3Su9e95wELoGMgJC4ptGluUoJgBAIIUTNAAGPOKEwelRP0cX3r_1e2CUDNBmUfkgld3Z0OFSNh7XBkvsOx90ue8rGbZWt9Hso5XB1pXHrbfVKy6sMdrpKuBGu9A69XPFpQ7buvCX6MzInddXvzlEz7ezp-ldtLyfL6aTZZQDjyEyOtN0rJNMFTKJpeGpMklBcj6mccKyVCqamYLHidEqz9N-TfogSko-jplmdIhGh7-5q7132ojG2VK6TgAReytib0X8WemB7AB82p3u_lmLh8lqdcxGB9b2cr7-WOneBeOUp-JlPReP6w3jy_lGAP0GdO94Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Instability maps of a system of Mathieu-Equations using different perturbation methods</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Hubinger, Stefan ; Gattringer, Hubert ; Bremer, Hartmut ; Mayrhofer, Karl</creator><creatorcontrib>Hubinger, Stefan ; Gattringer, Hubert ; Bremer, Hartmut ; Mayrhofer, Karl</creatorcontrib><description>It is well known, that the Mathieu‐equation possesses several instability regions. Dealing with systems of Mathieu‐ equations results in an increase of the number and size of the instability regions. The so called combination frequencies, an addition of the natural frequencies of the time invariant system, appear. Applying the Floquet theory and numerical integration yields a grid of stable and unstable areas. Even if this procedure delivers good results it is not suitable for a fast calculation, because it is very CPU‐ time consuming. Therefore several Perturbation methods are compared in this paper. The first one is the Lindstedt‐ Poincaré method, delivering some of the instability areas. The second one is the Multiple‐ Scales‐ method used with an approximation up to second order. Assuming the periodicity of the equations solution, with parameters on the boundary curve, facilitates the mathematical description of the borderline. An example is carried out; the analytical stability boundaries are validated by the Floquet theory. (© 2011 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201110151</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2011-12, Vol.11 (1), p.319-320</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1721-fe9e38e49bda42af75bf4d0c78324695ab39fd724febcc5e9e0cc50baa7826e63</citedby><cites>FETCH-LOGICAL-c1721-fe9e38e49bda42af75bf4d0c78324695ab39fd724febcc5e9e0cc50baa7826e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.201110151$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.201110151$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Hubinger, Stefan</creatorcontrib><creatorcontrib>Gattringer, Hubert</creatorcontrib><creatorcontrib>Bremer, Hartmut</creatorcontrib><creatorcontrib>Mayrhofer, Karl</creatorcontrib><title>Instability maps of a system of Mathieu-Equations using different perturbation methods</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>It is well known, that the Mathieu‐equation possesses several instability regions. Dealing with systems of Mathieu‐ equations results in an increase of the number and size of the instability regions. The so called combination frequencies, an addition of the natural frequencies of the time invariant system, appear. Applying the Floquet theory and numerical integration yields a grid of stable and unstable areas. Even if this procedure delivers good results it is not suitable for a fast calculation, because it is very CPU‐ time consuming. Therefore several Perturbation methods are compared in this paper. The first one is the Lindstedt‐ Poincaré method, delivering some of the instability areas. The second one is the Multiple‐ Scales‐ method used with an approximation up to second order. Assuming the periodicity of the equations solution, with parameters on the boundary curve, facilitates the mathematical description of the borderline. An example is carried out; the analytical stability boundaries are validated by the Floquet theory. (© 2011 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMvsPpPjFid2MVVVKpbaABGW07MSmhuYD2xHk35NShLox3Su9e95wELoGMgJC4ptGluUoJgBAIIUTNAAGPOKEwelRP0cX3r_1e2CUDNBmUfkgld3Z0OFSNh7XBkvsOx90ue8rGbZWt9Hso5XB1pXHrbfVKy6sMdrpKuBGu9A69XPFpQ7buvCX6MzInddXvzlEz7ezp-ldtLyfL6aTZZQDjyEyOtN0rJNMFTKJpeGpMklBcj6mccKyVCqamYLHidEqz9N-TfogSko-jplmdIhGh7-5q7132ojG2VK6TgAReytib0X8WemB7AB82p3u_lmLh8lqdcxGB9b2cr7-WOneBeOUp-JlPReP6w3jy_lGAP0GdO94Pg</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hubinger, Stefan</creator><creator>Gattringer, Hubert</creator><creator>Bremer, Hartmut</creator><creator>Mayrhofer, Karl</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201112</creationdate><title>Instability maps of a system of Mathieu-Equations using different perturbation methods</title><author>Hubinger, Stefan ; Gattringer, Hubert ; Bremer, Hartmut ; Mayrhofer, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1721-fe9e38e49bda42af75bf4d0c78324695ab39fd724febcc5e9e0cc50baa7826e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hubinger, Stefan</creatorcontrib><creatorcontrib>Gattringer, Hubert</creatorcontrib><creatorcontrib>Bremer, Hartmut</creatorcontrib><creatorcontrib>Mayrhofer, Karl</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubinger, Stefan</au><au>Gattringer, Hubert</au><au>Bremer, Hartmut</au><au>Mayrhofer, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability maps of a system of Mathieu-Equations using different perturbation methods</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2011-12</date><risdate>2011</risdate><volume>11</volume><issue>1</issue><spage>319</spage><epage>320</epage><pages>319-320</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>It is well known, that the Mathieu‐equation possesses several instability regions. Dealing with systems of Mathieu‐ equations results in an increase of the number and size of the instability regions. The so called combination frequencies, an addition of the natural frequencies of the time invariant system, appear. Applying the Floquet theory and numerical integration yields a grid of stable and unstable areas. Even if this procedure delivers good results it is not suitable for a fast calculation, because it is very CPU‐ time consuming. Therefore several Perturbation methods are compared in this paper. The first one is the Lindstedt‐ Poincaré method, delivering some of the instability areas. The second one is the Multiple‐ Scales‐ method used with an approximation up to second order. Assuming the periodicity of the equations solution, with parameters on the boundary curve, facilitates the mathematical description of the borderline. An example is carried out; the analytical stability boundaries are validated by the Floquet theory. (© 2011 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.201110151</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2011-12, Vol.11 (1), p.319-320
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_201110151
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
title Instability maps of a system of Mathieu-Equations using different perturbation methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20maps%20of%20a%20system%20of%20Mathieu-Equations%20using%20different%20perturbation%20methods&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Hubinger,%20Stefan&rft.date=2011-12&rft.volume=11&rft.issue=1&rft.spage=319&rft.epage=320&rft.pages=319-320&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201110151&rft_dat=%3Cistex_cross%3Eark_67375_WNG_QNV67LGV_1%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true