Building and solving matrix spectral problems
When an infinite dimensional operator T: X → X is approximated with (a slight perturbation of) an operator Tn : X → X of finite rank less than or equal to n, the spectral elements of an auxiliary matrix Z ∈ ℂn ×n , lead to those of Tn, if they are computed exactly. This contribution covers a general...
Gespeichert in:
Veröffentlicht in: | Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1022803-1022804 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When an infinite dimensional operator T: X → X is approximated with (a slight perturbation of) an operator Tn : X → X of finite rank less than or equal to n, the spectral elements of an auxiliary matrix Z ∈ ℂn ×n , lead to those of Tn, if they are computed exactly. This contribution covers a general theoretical framework for matrix problems issued from finite rank discretizations and perturbed variants, the stop criterion of the QR method for eigenvalues, the possibility of using the Newton method to compute a Schur form, and the use of Newton method to refine coarse approximate bases of spectral subspaces. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1617-7061 1617-7061 |
DOI: | 10.1002/pamm.200700487 |