Building and solving matrix spectral problems

When an infinite dimensional operator T: X → X is approximated with (a slight perturbation of) an operator Tn : X → X of finite rank less than or equal to n, the spectral elements of an auxiliary matrix Z ∈ ℂn ×n , lead to those of Tn, if they are computed exactly. This contribution covers a general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1022803-1022804
Hauptverfasser: Ahues, Mario, Largillier, Alain
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When an infinite dimensional operator T: X → X is approximated with (a slight perturbation of) an operator Tn : X → X of finite rank less than or equal to n, the spectral elements of an auxiliary matrix Z ∈ ℂn ×n , lead to those of Tn, if they are computed exactly. This contribution covers a general theoretical framework for matrix problems issued from finite rank discretizations and perturbed variants, the stop criterion of the QR method for eigenvalues, the possibility of using the Newton method to compute a Schur form, and the use of Newton method to refine coarse approximate bases of spectral subspaces. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1617-7061
1617-7061
DOI:10.1002/pamm.200700487