On the convergence of quasi-random sampling importance resampling

The Sampling/Importance Resampling (SIR) algorithm can be used for generating representative point sets from a distribution known up to a multiplicative constant. Moreover, the Quasi‐random Sampling Importance Resampling (QSIR) scheme, based on quasi‐Monte Carlo methods, is a recent modification of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings in applied mathematics and mechanics 2007-12, Vol.7 (1), p.1022401-1022402
Hauptverfasser: Cools, Ronald, Vandewoestyne, Bart
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022402
container_issue 1
container_start_page 1022401
container_title Proceedings in applied mathematics and mechanics
container_volume 7
creator Cools, Ronald
Vandewoestyne, Bart
description The Sampling/Importance Resampling (SIR) algorithm can be used for generating representative point sets from a distribution known up to a multiplicative constant. Moreover, the Quasi‐random Sampling Importance Resampling (QSIR) scheme, based on quasi‐Monte Carlo methods, is a recent modification of the SIR algorithm and was empirically shown to have better convergence. We present error convergence results for QSIR that we obtained using quasi‐Monte Carlo theory. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pamm.200700083
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_200700083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_RQF130CG_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2123-c3801960eb144eff829e9ffa0d4805ad75cf300d03c1fc1052b1e7166a544fde3</originalsourceid><addsrcrecordid>eNqFkE1PwkAQQDdGExG9eu4fKM5029322DSCJiBqNB43y3YWq_TDXVD590JQws3TTCbvzeExdokwQIDoqtN1PYgAJACk_Ij1UKAMJQg8PthP2Zn3bxseBYcey6dNsHylwLTNJ7k5NYaC1gYfK-2r0OmmbOvA67pbVM08qOqudUu9ZRz9Xc_ZidULTxe_s8-eh9dPxU04no5ui3wcmggjHhqeAmYCaIZxTNamUUaZtRrKOIVElzIxlgOUwA1ag5BEMySJQugkjm1JvM8Gu7_Gtd47sqpzVa3dWiGobQC1DaD2ATZCthO-qgWt_6HVfT6ZHLrhzq38kr73rnbvSkguE_VyN1KPD0PkUIyU4D8W0W72</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the convergence of quasi-random sampling importance resampling</title><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cools, Ronald ; Vandewoestyne, Bart</creator><creatorcontrib>Cools, Ronald ; Vandewoestyne, Bart</creatorcontrib><description>The Sampling/Importance Resampling (SIR) algorithm can be used for generating representative point sets from a distribution known up to a multiplicative constant. Moreover, the Quasi‐random Sampling Importance Resampling (QSIR) scheme, based on quasi‐Monte Carlo methods, is a recent modification of the SIR algorithm and was empirically shown to have better convergence. We present error convergence results for QSIR that we obtained using quasi‐Monte Carlo theory. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.200700083</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2007-12, Vol.7 (1), p.1022401-1022402</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2123-c3801960eb144eff829e9ffa0d4805ad75cf300d03c1fc1052b1e7166a544fde3</citedby><cites>FETCH-LOGICAL-c2123-c3801960eb144eff829e9ffa0d4805ad75cf300d03c1fc1052b1e7166a544fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpamm.200700083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpamm.200700083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cools, Ronald</creatorcontrib><creatorcontrib>Vandewoestyne, Bart</creatorcontrib><title>On the convergence of quasi-random sampling importance resampling</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>The Sampling/Importance Resampling (SIR) algorithm can be used for generating representative point sets from a distribution known up to a multiplicative constant. Moreover, the Quasi‐random Sampling Importance Resampling (QSIR) scheme, based on quasi‐Monte Carlo methods, is a recent modification of the SIR algorithm and was empirically shown to have better convergence. We present error convergence results for QSIR that we obtained using quasi‐Monte Carlo theory. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQQDdGExG9eu4fKM5029322DSCJiBqNB43y3YWq_TDXVD590JQws3TTCbvzeExdokwQIDoqtN1PYgAJACk_Ij1UKAMJQg8PthP2Zn3bxseBYcey6dNsHylwLTNJ7k5NYaC1gYfK-2r0OmmbOvA67pbVM08qOqudUu9ZRz9Xc_ZidULTxe_s8-eh9dPxU04no5ui3wcmggjHhqeAmYCaIZxTNamUUaZtRrKOIVElzIxlgOUwA1ag5BEMySJQugkjm1JvM8Gu7_Gtd47sqpzVa3dWiGobQC1DaD2ATZCthO-qgWt_6HVfT6ZHLrhzq38kr73rnbvSkguE_VyN1KPD0PkUIyU4D8W0W72</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Cools, Ronald</creator><creator>Vandewoestyne, Bart</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200712</creationdate><title>On the convergence of quasi-random sampling importance resampling</title><author>Cools, Ronald ; Vandewoestyne, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2123-c3801960eb144eff829e9ffa0d4805ad75cf300d03c1fc1052b1e7166a544fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Cools, Ronald</creatorcontrib><creatorcontrib>Vandewoestyne, Bart</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cools, Ronald</au><au>Vandewoestyne, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the convergence of quasi-random sampling importance resampling</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2007-12</date><risdate>2007</risdate><volume>7</volume><issue>1</issue><spage>1022401</spage><epage>1022402</epage><pages>1022401-1022402</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>The Sampling/Importance Resampling (SIR) algorithm can be used for generating representative point sets from a distribution known up to a multiplicative constant. Moreover, the Quasi‐random Sampling Importance Resampling (QSIR) scheme, based on quasi‐Monte Carlo methods, is a recent modification of the SIR algorithm and was empirically shown to have better convergence. We present error convergence results for QSIR that we obtained using quasi‐Monte Carlo theory. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.200700083</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2007-12, Vol.7 (1), p.1022401-1022402
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_200700083
source Wiley Journals; EZB-FREE-00999 freely available EZB journals
title On the convergence of quasi-random sampling importance resampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20convergence%20of%20quasi-random%20sampling%20importance%20resampling&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Cools,%20Ronald&rft.date=2007-12&rft.volume=7&rft.issue=1&rft.spage=1022401&rft.epage=1022402&rft.pages=1022401-1022402&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.200700083&rft_dat=%3Cistex_cross%3Eark_67375_WNG_RQF130CG_6%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true